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Abstract

We study aggregate efficiency when households have heterogeneous preferences

and outcomes. We generalize the consumption-equivalent variation of Lucas (1987) to

a multi-agent setting, asking: how much can the consumption-possibility set shrink

while keeping every agent at least as well off as in their status-quo allocation? The

resulting scalar — resources left over after compensating everyone — is our measure

of aggregate efficiency. Efficiency rises whenever the same status-quo welfare can be

achieved with fewer resources. We show how to convert this problem into an equiv-

alent utility-maximization problem, enabling the use of tools and results normally

applicable only in representative agent settings. We characterize changes in aggre-

gate efficiency in terms of observables, like expenditures and price elasticities, and

apply our results to study, among other things, the effects of productivity shocks, the

costs of misallocation, and the effects of trade shocks, both with and without costly

redistribution.
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1 Introduction

Two central themes in economics are efficiency—how large the economic “pie” is and
what determines its size—and equity—how that pie is, or ought to be, shared. The nor-
mative question of how resources should be divided among people is controversial and
subjective. For this reason, it is useful to study efficiency in isolation from equity. With a
single agent, this separation is trivial and automatic because distributional issues never
arise. With heterogeneous consumers, however — especially when they differ in tastes or
face different prices — the two questions are harder to separate.

In policy circles, changes in aggregate efficiency are typically measured by cost-benefit
analysis. This may be done explicitly, by estimating and summing compensating varia-
tions, or implicitly, by using market-based quantity indices like real GDP (which, under
appropriate assumptions, are equivalent to summing compensating variations). These
metrics measure the change in aggregate efficiency by the amount of money (at constant
prices) left-over after winners compensate losers. Such measures are popular in policy
contexts because they are objective, taking the view that a dollar is a dollar, regardless of
who earns it.

However, it is well-known that these measures have theoretical problems. For one,
the transfers implied by summing up compensating variations may be infeasible. Either
because there is no mechanism by which winners can compensate the losers (e.g. Antràs
et al., 2012 and Schulz et al., 2023) or because, even if transfers can be made, relative
prices may change in response to the transfers making compensations impossible (e.g.
Boadway, 1974). At a more abstract level, in some settings, for example when decentral-
ized markets are incomplete or absent, the notion of a compensating variation, or even
prices themselves, may be undefined.

In academic settings, aggregation across heterogeneous agents is often achieved via
a social welfare function. This approach, pioneered by Bergson (1938) and Samuelson
(1947), avoids the paradoxes and shortcomings of cost-benefit analysis, but does so at
the cost of entangling efficiency and equity considerations. Social welfare functions au-
tomatically take a stance not just on the size of the economic pie, but also on its optimal
division. This means that social welfare functions depend on subjective Pareto-weights
and are not invariant to monotone transformations of utility functions. This makes them
unattractive for use in practical policy design, especially if heterogeneity in tastes is im-
portant (i.e. in cases where we cannot use the same utility function to represent every
agent’s preferences).

In this paper, we provide an alternative approach to study aggregate efficiency in
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isolation from the question of distribution, building on ideas from Allais (1979), De-
breu (1951), and Luenberger (1996). Our measure generalizes the popular Lucas (1987)
consumption-equivalent beyond the one-agent setting, without taking a stance on how
resources should be divided across people. To measure changes in aggregate efficiency
we ask: by how much can the consumption-possibility set shrink while keeping every agent at
least indifferent to their status-quo allocation? We call the resulting contraction factor the ag-
gregate consumption-equivalent variation. It measures the resources left over after everyone
has been compensated; efficiency rises whenever the same welfare as in the status-quo
can be achieved with less resources. This is a measure of efficiency since it summarizes
the amount of resources that can be saved while attaining indifference. We do not refer to
it as a measure of aggregate welfare to distinguish it from a social welfare function that
embeds normative judgements about interpersonal utility comparisons.

Our measure answers a counterfactual question in terms of observables. Unlike so-
cial welfare functions, it does not introduce free parameters such as Pareto weights and
is invariant to monotone transformations of utility (i.e. it depends only on ordinal prop-
erties of preference relations). Moreover, the measure does not take a normative stance
on the optimal distribution of resources across individuals beyond compensating every
agent relative to the status-quo. For example, if aggregate efficiency increases and there
are extra resources left over after everyone has been compensated, our measure takes no
stance on who should get those resources.

The numerical value of our efficiency measure is interpretable and, in the special case
of a single agent, collapses to the familiar consumption-equivalent measure of Lucas. Be-
cause its definition neither presupposes the existence of markets nor depends on prices,
it avoids the limitations and paradoxes of traditional cost-benefit analysis. The mea-
sure accommodates a wide range of decentralization mechanisms — such as competitive
markets, search-and-matching, bargaining, and imperfect competition — as well as con-
straints on redistribution — including limited taxation or costly transfers. Moreover, our
measure remains tractable across a broad class of models.

We characterize our measure of aggregate efficiency in terms of observables and gen-
eralize well-known representative-agent results to settings with heterogeneous-agents.
This paper has two stand-alone companions —Baqaee and Burstein (2025a) and Baqaee
and Burstein (2025b) — where we apply our framework to answer two different ques-
tions: the cost of misallocation due to financial market incompleteness (in both closed
and open-economies) and changes in aggregate efficiency in random utility models with
discrete choice. In both applications, household heterogeneity is a central feature of the
problem.
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The structure of the paper is as follows. In Section 2, we define our measure in abstract
terms and present a key result: Theorem 1 converts the problem of calculating aggregate
consumption-equivalents into an equivalent fictional utility-maximization problem for
an agent with homothetic preferences. This forms the basis for all other results in the pa-
per because it allows us to port tools used to study the welfare of representative-agents
with homothetic preferences, like Hulten (1978), Harberger (1964), Arkolakis et al. (2012),
Petrin and Levinsohn (2012), and Baqaee and Farhi (2019b, 2020) to economies with het-
erogeneous agents.

The abstract environment in Section 2 does not impose much structure on how con-
sumption possibility sets come about (for example, general equilibrium is a special case).
In Section 3, we specialize the environment to a general equilibrium setting with poten-
tially distorting wedges and lump-sum transfers. We also define some popular alterna-
tive measures of efficiency from the literature to facilitate comparison with our approach:
real output (using a Divisia or chain-weighted index), Kaldor-Hicks efficiency (which
compares total income to the sum of compensating incomes), and the welfare of a posi-
tive representative agent (if such an agent exists). We establish an important equivalence
result: if all households have identical homothetic preferences and face the same rela-
tive prices, our measure of aggregate efficiency (with lump-sum transfers) coincides with
those alternative measures. Outside of these common but restrictive assumptions, how-
ever, the measures generally differ.

A key result in Section 3 is that our aggregate efficiency measure can be calculated us-
ing a compensated equilibrium. The compensated equilibrium is the general equilibrium
of an economy with the same technologies and distortions as the real economy, but pop-
ulated by a fictional representative agent with homothetic preferences. We show that the
utility of this fictional representative agent measures the change in aggregate efficiency.
This result makes it straightforward to use tools and methods from representative-agent
economies to analyze aggregate efficiency with heterogeneous agents.

In Section 4 we restrict attention to perfectly competitive economies where both the
first and second welfare theorem hold. We show that in such settings and to a first-order
approximation, Hulten (1978) applies to our measure of aggregate efficiency unaltered.
That is, to a first-order, our measure of changes in aggregate efficiency coincide with
total factor productivity as measured by the Solow (1957) residual. We then derive a
nonlinear version of Hulten (1978) that applies to aggregate consumption-equivalents,
extending the nonlinear characterizations in Baqaee and Farhi (2019b) to economies with
heterogeneous agents and potentially non-homothetic household preferences. We show
that changes in aggregate efficiency depend only on expenditure shares and price elas-
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ticities. We also generalize the sufficient-statistics of Arkolakis et al. (2012), developed
for single-agent economies, to quantify the gains from trade in economies with heteroge-
neous agents.

In Section 5 we consider distorted economies, and derive versions of Hsieh and Klenow
(2009), Petrin and Levinsohn (2012), Harberger (1954, 1964), and Baqaee and Farhi (2020)
that apply to economies with heterogeneous agents. In particular, we derive a version of
the famous Harberger triangles formula that can be used to quantify misallocation with
heterogeneous agents, and show that there is a sense in which misallocation losses in the
heterogeneous agent model are lower than in representative agent models. This is be-
cause our Harberger triangles formula discards dispersion in wedges due to difference
in average wedges paid by each household. This is because differences in the average
wedge by household are equivalent to lump-sum transfers and do not imply (Pareto)
inefficiency.

In Section 6 we consider economies with costly redistribution (i.e. without lump-sum
transfers). We discuss how Theorem 1 can be used to analyze changes in aggregate effi-
ciency when redistributive instruments are limited (e.g. revenues used for redistribution
are raised via distortionary taxes). We show that, starting in perfect competition, the
change in aggregate efficiency due to a change in primitives is, to a first-order, the same
as Hulten (1978). To a second-order, the change in efficiency is equal to what would have
happened with lump-sum transfers (characterized in Sections 4 and 5) minus the ad-
ditional Harberger triangles caused by inefficient redistribution (which are zero if lump-
sum transfers are available). We end the section with a quantitative example: how the rise
of China affected the United States, as measured by the aggregate consumption equiva-
lent. We show that the answer depends on the ease with which workers can move across
sectors, and the range of redistributive tools available. Whereas the aggregate consump-
tion equivalent change is positive when workers can move across sectors or if lump-sum
transfers are available, it is negative if workers are restricted to working within narrow
industries and redistribution is impossible or difficult.

Related literature. Our approach to measuring aggregate efficiency is related to willingness-
to-pay based measures, which have a very long history dating all the way back to at least
Dupuit (1844). For example, the compensating variation, and sum of compensating vari-
ations, in Hicks (1939) and Kaldor (1939), are special cases. Furthermore, the notion of so-
cial surplus in Allais (1979), the coefficient of resource utilization in Debreu (1951, 1954),
the measure of efficiency in Farrell (1957), and the benefit function in Luenberger (1996)
are all related to our measure. Our contribution relative to these works is to provide a
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characterization without assuming either Pareto efficiency or markets, explicitly allow-
ing for limited or costly redistribution, and applying our measure to modern models.

Our paper is also related to cost-benefit analysis, typically performed by using the sum
of compensating variations, as in Harberger (1971), and related ideas like the marginal
value of public funds (Hendren and Sprung-Keyser, 2020). The idea behind these mea-
sures is to ask: “after the winners compensate the losers using lump-sum transfers, is
there still money left on the table?” Our measure of efficiency coincides with these mea-
sures when both welfare theorems hold and the consumption-possibility set is linear.
However, outside of these cases, the two measures are different. First, if the consumption-
possibility set is nonlinear, then as shown by Boadway (1974), a pure transfer between
agents can cause the sum of compensating variations to exceed zero. Intuitively, the trans-
fer lowers prices for goods that are relatively more valued by losers than winners. Hence,
it is possible to compensate the losers using the post-transfer prices and still have money
left-over. Our measure, which can be defined even when prices do not exist, does not
have this property.

Second, unlike the sum of compensating variations, our measure does not presup-
pose that lump-sum transfers are feasible. In this sense, our approach has similarities
to Schulz et al. (2023), who generalize the sum of compensating variations to allow for
limited redistribution.1 Our paper complements and differs from Schulz et al. (2023) in
many ways, the most important being a difference in focus. They consider economies
with a single consumption good, focusing their attention on a mechanism design prob-
lem where lump-sum taxes are unavailable because of asymmetric information. Although
our formalism and definitions can be applied to such economies, we do not focus on these
issues. Instead, we focus on allowing for multiple goods and heterogeneity in preferences
and relative prices faced by consumers. This means that even with perfect information
and lump-sum transfers, there are interesting questions about how to aggregate across
consumers that consume and value different goods.

As mentioned above, a different approach to aggregation is to use a social welfare
function to evaluate outcomes. A prominent example is the behind the veil-of-ignorance
measure of Harsanyi (1955). Social welfare functions are by far the most common ap-
proach in the modern literature to aggregating across heterogeneous agents.2 Our paper,

1In response to a shock, they consider a tax reform that makes households indifferent to the status-quo
and then measure the monetary value of aggregate welfare gains or losses by the fiscal surplus from this
reform.

2There is a branch of the literature that assumes observed allocations can be rationalized by maximizing
some social welfare function within some parametric class, estimates this function, and uses it to conduct
policy analysis (see Heathcote and Tsujiyama, 2021 and the references therein). This is equivalent to as-
suming there exists a normative representative agent: a hypothetical single decision-maker whose utility

6



which instead looks for and quantifies the potential for Pareto improvements (i.e. com-
pensating everyone and looking to see if resources are left over), studies an alternative
question that the one analyzed by this methodology.

Following in the social-welfare-function tradition, a recent set of papers, including
Bhandari et al. (2021), Dávila and Schaab (2022, 2023), and Donald et al. (2023) provide
approximate decompositions of changes in social welfare functions. Our goal in this pa-
per is different: we do not provide decompositions of social welfare functions, but in-
stead, define and characterize aggregate efficiency directly as an answer to a counterfac-
tual question. The decompositions in the papers mentioned above contain components
the authors refer to as capturing efficiency. However, since our objective is different, our
notion of efficiency is also generically different to the efficiency components in these pa-
pers. Defining efficiency directly, instead of as part of an approximate decomposition, is
useful because it means that we can also study large changes.3

In terms of the tools and methods, our paper is closely related to the literature that
studies the macroeconomic consequences of microeconomic productivity changes and
wedges. For productivity changes, this includes Gabaix (2011), Acemoglu et al. (2012),
Baqaee and Farhi (2019b) and others. For wedges, this includes Harberger (1954), and
more recently, Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Bigio and La’O
(2016), Liu (2017), Baqaee and Farhi (2020), among others. We relax the assumption typ-
ically maintained in both of these literatures that households have common preferences
and face common prices.4

Finally, because we use the gains from trade as one of our examples, our paper is also
related to the gains from trade with heterogeneous agents. Much of the work on inter-
national trade with heterogeneous agents focuses on the distributional effects of trade.
Some examples of papers that also calculate aggregate welfare are Antras et al. (2017)
and Galle et al. (2023) (using an Atkinson (1970)-style social welfare function with in-
equality aversion), Kim and Vogel (2020) (using the sum of compensating variations),

function is maximized by observed allocations (Chapter 4 Mas-Colell et al., 1995). Our approach is different
since we do not need to assume the existence of either a positive nor normative representative agent. Fur-
thermore, even if a normative representative agent exists, there is nothing to say that its preferences should
be privileged over any other social welfare function (see Example 6 below).

3Whereas infinitesimal changes in our measure of efficiency can be integrated to study large changes,
integrals of components in a decomposition of social welfare are path-dependent. To see this point, sup-
pose we approximately decompose changes in some function y = f (x1, x2) into dy ≈ (∂ f /∂x1)dx1 +
(∂ f /∂x2)dx2. Then we can write non-infinitesimal changes as ∆y =

∫
(∂ f /∂x1)∆x1 +

∫
(∂ f /∂x2)∆x2 but,

unless f (x1, x2) is linear in x1 and x2, the size of each component of this nonlinear decomposition depends
on the arbitrary path of integration.

4One exception is Bornstein and Peter (2024), who study misallocation with differences in tastes and
markups across households. In their setting, symmetry and the law-of-large numbers implies that every
households’ problem is identical despite the fact that households have different preferences.
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and Rodríguez-Clare et al. (2022) (using a population-weighted average of welfare gains
across regions), all of which differ from our measure of aggregate efficiency for reasons
already discussed.

2 Abstract Definition and Characterization

Consider an economy populated by agents indexed by h ∈ {1, ..., H}. Agent h has ordinal
preferences ⪰h over commodity vectors ch ∈ RN, where N is the number of goods.5

Assume preferences are represented by utility functions uh(ch).6 A consumption allocation
is a matrix c ∈ RH×N whose hth row, denoted by ch, equals the consumption vector of
agent h.

Fix some consumption allocation, denoted by c0, as the status-quo. We think of c0 as
the data generated by some initial equilibrium outcome. Define C ⊂ RH×N to be some set
of feasible consumption allocations, determined by deeper primitives like technologies,
policies, and so on. We think of C as the counterfactual we are interested in studying.

Definition 1 (Aggregate Consumption Equivalent Variation). The Aggregate Consumption-
Equivalent Variation of the set C relative to the status-quo c0 is the maximum proportional
contraction of C such that every agent can be kept at least indifferent to the status-quo
allocation. Formally,

A(c0, C) ≡ max
{

ϕ ∈ R : there is c ∈ ϕ−1C and uh(ch) ≥ uh(c
0
h) for every h

}
. (1)

We refer to A as aggregate efficiency throughout the paper. The change in aggregate effi-
ciency relative to the status-quo is

∆ log A(c0, C) = log A(c0, C)− log A(c0, c0) = log A(c0, C).

The cardinal value of A is interpretable. For concreteness, say, A = 1.01, then this
means that it is possible to make everyone at least as well off as in the status-quo and
discard 1% of every good (or more precisely, (1− 1/A)%). Agents may not be consuming
the same bundle as in the status-quo after they are compensated — we only require that
they be indifferent to the status-quo. If there is a single household and C is a consumption
allocation, then A is the same as the consumption-equivalent variation of Lucas (1987).
As in both Lucas (1987) and Debreu (1951), the definition of A treats all commodities

5We assume that preferences are continuous and locally nonsatiated.
6That is, for each household uh(ch) ≥ uh(c

′
h) if, and only if, ch ⪰ c′h.
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symmetrically by shifting the consumption possibility set, C, proportionately in every
dimension.7

co
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0A(c  ,C) -1

Figure 1: Aggregate efficiency is measured by the maximal radial contraction of the fea-
sible set necessary to achieve indifference.

Figure 1 illustrates the change in aggregate efficiency for a simple economy with two
households, indexed by h and h′, and two consumption goods, one consumed only by h
and the other only by h′. The set C is the set of feasible consumption possibilities. As the
figure shows, if ∆ log A > 0, then it must be the case that there are feasible allocations in
C that Pareto-dominate the status-quo c0.

The measure in Definition 1 has some desirable properties: (1) it answers a counter-
factual question about observable phenomena with interpretable units (i.e. how much
of every good is left-over after everyone is compensated?). The answer to this question
is invariant to monotone transformations of utility functions, and only relies on ordinal

7Note that the choice of how to scale the set C is present even with a single agent. For example, do
we shrink or expand every element in a consumption vector to reach indifference, as in the consumption-
equivalent variation of Lucas (1987), or only some components. Similarly, do we scale the whole budget
set proportionally, as in the compensating variation of Hicks (1939), or do we change individual prices of
certain commodities to reach indifference. In this sense, this choice is not special to having heterogeneous
agents or not. One reason to focus on a radial contraction is because in general equilibrium, expanding
and contracting the feasible consumption set proportionally is isomorphic to scaling the vector of factor
endowments (including quasi-fixed factors capturing decreasing returns to scale). This is an intuitive way
to measure efficiency — efficiency is measured by the reduction in factor endowments necessary to reach
indifference to status-quo. The reason our measure of aggregate efficiency differs from standard approaches
like using social welfare functions or chained real consumption in multi-agent settings is not due to the fact
that we scale the consumption possibility set proportionally. For example, our measure differs even if there
is only a single consumption good (so there is no choice of how to expand or shrink the consumption
set because there is only one consumption good). In some settings, it may be interesting to expand or
shrink C in a particular direction, rather than radially. This requires generalizing our definition to allow
for non-radial expansions, as in the transferable surplus notion in Allais (1979). We do not pursue this
generalization in this paper.
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properties of preference relations. (2) Our measure does not take a stance on how social
surplus or losses should be divided among agents. That is, while we can assign a numer-
ical efficiency value to every feasible set of consumption allocations, C, we do not attempt
to pick a specific allocation among the possibilities as being socially “optimal.” (3) Our
definition places no restrictions on the set of redistributive tools that are available or the
mechanism by which allocations are decentralized (e.g. spot markets, search, bargain-
ing, etc.). The instruments of redistribution are implicitly embedded into the shape of the
feasible set C.8 (4) This abstract definition is applicable to a wide variety of models and
circumstances, allowing for, among other things, non-homothetic preferences, discrete
choice, risk, and dynamics.9

To characterize ∆ log A, we prove a useful theorem, which we repeatedly use in the
rest of the paper. This theorem proves that calculating ∆ log A is equivalent to solving a
utility-maximization problem for some fictitious agent. To state this result, we first define
homothetized transformations of individual preferences.10

Definition 2. Let uh(ch) denote a utility representation for agent h. The homothteized utility
function ũh(ch) is implicitly defined by

uh(
ch
ũh

) = uh(c
0
h).

The homothetized utility function, ũh, is homogenous of degree one in consumption
by construction. If the preference relation ⪰h is homothetic, then ũ is a cardinalization of
⪰h — in this case, ũh ranks consumption bundles in the same order as ⪰h. By construc-
tion, ũh is homogenous of degree one and normalized to equal to 1 at c0

h. The magnitude
of ũh(ch) is interpretable — it measures the amount the consumption bundle ch has to be
scaled to make the household exactly indifferent to the status-quo. In this sense, ũh(ch) is
the household’s consumption-equivalent variation relative to the status-quo.

Example 1 (Single good). Suppose there is a single consumption good, so uh(ch) is some

8For example, for convex competitive economies, if lump-sum transfers are available, then the second
welfare theorem implies that C is the set of all Pareto-efficient allocations. However, the definition can also
be applied to economies where such transfers are not available.

9Our measure of aggregate efficiency can be used to order feasible sets under a given status-quo. The
ordering of two feasible sets may flip for different status-quos, similar to Scitovszky (1941). For a fixed
status-quo, our measure of aggregate efficiency gives a unique ordering of feasible sets. For example, if
C ′ ⊆ C, then A(c0, C ′) ≤ A(c0, C).

10The homothetized utility function is also called the distance function in the duality literature on opti-
mization (see, for example, Cornes, 1992).
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increasing function. In this case,
ũh(ch) =

ch

c0
h

,

regardless of the functional form of uh. See Appendix D for a more involved example
using non-homothetic CES preferences.

If ⪰h is non-homothetic, then ũh is not a cardinalization of ⪰h (i.e. ũh does not rank
consumption allocations according to ⪰h). Figure 2 graphically depicts indifference curves
of ũh — they are radial expansions of the status-quo indifference curve defined by uh(ch) =

uh(c
0
h). When ⪰h is homothetic, all indifference curves are radial expansions, so that the

ranking produced by ũh coincides with the one produced by ⪰h.

good 1

good 2

c0
h

Figure 2: The solid blue line is the indifference curve uh(ch) = uh(c
0
h) and the dashed

lines are the indifference curves of ũh.

Define a fictitious compensated agent as follows.

Definition 3. The compensated agent is an agent whose preferences are represented by

U(c) = min
h

{ũh(ch)},

where ũh are homothetized utility functions.

The utility function U(c) is homogeneous of degree one by construction. We call this
agent compensated because, as we show in Appendix A, the budget shares of this agent
are the average of the compensated budget shares of all the agents weighted by each
agent’s compensating income.
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Note that, the function U(c) is not a social welfare function. There are two reasons for
this. First, U does not depend on households’ true utility functions, instead it depends
on the “homothetized” utility functions. Second, U depends on the minimum growth in
homothetized utility relative to status-quo, rather than the level of utility (i.e. U(c) is not
a Rawlsian social welfare function).

We can now state the main result of this section.

Theorem 1 (Aggregate Efficiency by Utility Maximization). The aggregate consumption
equivalent is equal to the value of C to the compensated agent:

A(C, c0) = max
c∈C

U(c). (2)

Figure 3 graphically illustrates the content of Theorem 1. Rather than proportionally
shifting C to reach the indifference point, Theorem 1 states that we can instead maximize
U(c) — by shifting out the indifference curves of the compensated agent — until we
reach the boundary of C. The utility of this fictional agent is numerically identical to the
maximal reduction in C needed to reach indifference.

 

C
Indi�erence curve of 
Hicksian rep-agent U = 1

}
Indi�erence curve of 
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Figure 3: The increase in the utility of the compensated agent also measures the amount
by which C needs to shrink to ensure indifference.

Theorem 1 is crucial because it converts the problem of calculating aggregate efficiency
in (1) into an equivalent utility-maximization problem. Since utility-maximization prob-
lems are common in economics, this means that Theorem 1 allows us to easily convert
results about representative agent problems into ones about aggregate efficiency with
heterogeneous agents.

If the maximizer in (2), c∗, is such that ũh(c
∗
h) = ũh′(c

∗
h′) for every h and h′, then we

say that all households can be exactly compensated. This is because this implies there exists
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a consumption allocation, c∗/A in C that makes every agent exactly indifferent to the
status-quo with a share 1 − 1/A of every consumption good is left-over.

Theorem 1 guarantees that maximizing U(c) yields the same number as the maximiza-
tion problem that defines A. However, unlike a social welfare maximization problem,
there is no sense in which the allocation c∗ that maximizes U(c) is the optimal allocation
because primitive problem defining ∆ log A is stated in terms of shrinking the possibility
frontier, not choosing an allocation inside it. In other words, if A > 1, then there is a
range of allocations that can engineer a Pareto improvement and we do not take a stance
on which one society should choose.

The rest of the paper uses Theorem 1 in different contexts to characterize changes in
aggregate efficiency in terms of observables. Although Theorem 1 applies very gener-
ally, we focus on cases where the consumption possibility set is determined by general
equilibrium (possibly with distortions and limited transfers).

3 Decentralized Equilibrium with Lump-Sum Transfers

In this section we set up a general-equilibrium framework that admits distortive wedges.
We assume the consumption possibility set is the set of equilibrium consumption al-
locations achievable by lump-sum transfers (Section 6 considers when transfers are re-
stricted). We show, via Theorem 1, how to compute the aggregate consumption-equivalent
variation in these settings. For comparison, we also define three alternative metrics that
are popular in the literature: (1) chain-weighted real output, (2) the sum of compensating
variations (Kaldor-Hicks/Cost-Benefit), and (3) the welfare of a positive representative
agent. We establish the restrictive conditions under which all four measures coincide.
The remainder of the paper then examines the more general cases in which these condi-
tions fail, and where our measure no longer aligns with the conventional ones.

3.1 Environment and Equilibrium

Each household maximizes utility uh(ch) subject to the budget constraint

∑
i

pichi ≤ ∑
f

ωh f w f L f + Th,

where the left-hand side is total expenditures and the right-hand side is total income. As
in Arrow-Debreu, commodities could be indexed by time and state of nature. On the left-
hand side, pi is the price of i and chi is the quantity of good i purchased by household h.
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On the right-hand side, households derive income from factors and lump-sum transfers.
Households h owns a share ωh f of factor f , where w f is the wage and L f is the total
quantity of factor f . Lump-sum transfers are Th.

Producer i chooses its inputs to minimizes costs

∑
j

pjyij + ∑
f

w f li f ,

subject to production technology

yi = ziFi
({

yij
}

,
{

li f
})

,

where yi is the quantity of output, Fi is a constant-returns production function, yij are
intermediate inputs used by i produced by j, and li f are primary factors used by i. The
assumption that Fi has constant-returns is without loss of generality, since we can capture
decreasing returns using producer-specific factors. The parameter zi is a Hicks neutral
productivity shifter. The price of i is equal to an exogenous markup or tax, µi > 0, times
i’s marginal cost of production. That is, the price of i is inclusive of the wedge on i’s
output.

The resource constraint for goods and factors is

∑
j

yji + ∑
h

chi ≤ yi, and ∑
i

li f ≤ z f L f ,

where z f , when f indexes a factor, controls the endowment of efficiency units of factor
f . Finally, net transfers across households are equal to the revenues generated by the
wedges:

∑
h

Th = ∑
i

piyi

(
1 − 1

µi

)
. (3)

Buyer-seller-specific productivity and wedges. Although we assume that zi is Hicks
neutral and wedges are on gross output only, both of these assumptions are made without
loss of generality. This is because we can recreate buyer-seller productivity changes and
wedges by relabeling. Specifically, we can treat firm or household i’s purchases of an
input from j as a distinct good (made linearly using j’s output). A productivity shock or
a wedge on this good is then isomorphic to a buyer-seller specific productivity shock or
wedge. We make the assumption that zi is Hicks neutral and assume all wedges take the
form of taxes on gross output to simplify the notation.
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We now define a general equilibrium with wedges.11

Definition 4 (Decentralized Equilibrium with Wedges). A decentralized equilibrium with
wedges is the collection of prices and quantities such that: (1) the price of each good i
equals its marginal cost times a wedge µi; (2) each producer chooses quantities to mini-
mize costs taking prices as given; (3) each household chooses consumption quantities to
maximize utility taking prices, consumption taxes, and income as given; (4) net transfers
across households are equal to wedge revenues; (5) all resource constraints are satisfied.

3.2 Different Aggregate Measures in General Equilibrium

We specialize the definition of aggregate-consumption equivalents to this environment.
We also define some other popular measures of aggregate economic activity used in the
literature. To do so, we index all exogenous parameters (productivities, wedges, trans-
fers) by a scalar t and let t = 0 denote the status-quo allocation. For any equilibrium price
or quantity X, we write X(t) to denote its dependence on the exogenous parameters.12

We begin by defining our measure of efficiency.

Aggregate Consumption-Equivalent Variation. Denote the equilibrium consumption
allocations given productivity parameters, z, wedges, µ, and lump-sum transfers, T by
c(z,µ,T ). If the equilibrium is unique, then this is a singleton. The consumption possi-
bility set, given lump-sum transfers, is

C(t) = {c(z(t),µ(t),T ) for some transfers T satisfying (3)} .

In words, C(t) is the set of equilibrium consumption allocations that can be attained by
varying lump-sum transfers.

Definition 1 defines A(t) the maximum contraction of the consumption possibility
set, scaling every feasible allocation by 1/A(t), that allows every agent to be kept at least
indifferent to the status-quo. Using Theorem 1 implies that

A(t) = max
T

{
U(c) : c ∈ C(t) with ∑

h
Th = 0

}
. (4)

11This notion of general equilibrium is the same one used by Baqaee and Farhi (2020), extended to allow
for multiple households.

12In the case of multiple equilibria, we assume there is an equilibrium selection mechanism. The nature
of this equilibrium selection mechanism is not relevant for A(t), because A(t) is unique given t and the
status-quo.
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Note that the consumption possibility set may be distorted, in the sense that it may not
be the Pareto frontier defined by technologies.

For comparison, we define some other common measures of aggregate efficiency.

Real Output. In national income accounting, real output is measured using approxima-
tions to the Divisia (1925) index. Aggregate real output, defined using the Divisia index,
is

log Y(t) =
∫ t

0
∑

i

pi(s)ci(s)
∑i′ pi′(s)ci′(s)

d log ci(s)
ds

ds,

where ci(s) = ∑h∈H chi(s) denotes aggregate consumption of good i at s ∈ [0, t].13 In
words, this is the cumulative change in the quantity of every final good, weighted by the
contemporaneous expenditure share on that final good. By construction, real output in
the status-quo is one: Y(0) = 1.14

Kaldor-Hicks/Cost-Benefit Efficiency. Another popular aggregate measure is the Kaldor-
Hicks efficiency measure. This measure compares the sum of compensating incomes to
aggregate income at t. If the sum of compensating incomes is less than aggregate in-
come, then the winners can hypothetically compensate the losers and there can still be
money left-over. The amount of money left over is a measure of the increase in efficiency.
This method is the foundation of most of cost-benefit style analyses in applied welfare
economics and policy evaluation in public finance and industrial organization.

Let eh(p, uh) be an expenditure function representing preferences ⪰h. The Kaldor-
Hicks measure of efficiency at t is

AKH(t) = ∑h eh(p(t), uh(t))
∑h eh(p(t), uh(0))

. (5)

Note that, by construction, Kaldor-Hicks efficiency at the status-quo is equal to one:
A(0) = 1.

Consumption-equivalent of Representative Agent. Another well-known aggregate mea-
sure, when a representative agent exists, is the consumption-equivalent variation used by

13In practice, statistical agencies apply this formula in a static way, period-by-period, to define real output
and use chain-weighted discretized approximations to the true (integral) Divisia index.

14As we show below, and is well-understood, in the absence of a representative agent with homothetic
preferences, chain-weighted real output does not necessarily measure anything welfare relevant. See, for
example, Hulten (1973) and, more recently, Baqaee and Burstein (2023). Nevertheless, ∆ log Y is a useful,
and commonly relied upon, statistic which, under the assumptions of Proposition 1, is a welfare-relevant
measure.
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Lucas (1987). A representative agent is a hypothetical single consumer such that the de-
mand of the representative agent for each good, given prices and total income, coincides
with equilibrium quantity of that good, given the same prices and aggregate income.15

If a representative agent exists, define the consumption-equivalent for the representa-
tive agent, ARA(t), to be

uRA
(
cRA(t)/ARA(t)

)
= uRA

(
cRA(0)

)
,

where uRA is the utility function of the representative agent. In words, ARA(t) is the
amount by which the aggregate consumption bundle in t must be contracted to make the
positive representative agent exactly indifferent to the status-quo. As with all the other
measures, ARA(0) = 1 by construction.

3.3 Characterizing A(t) Using Theorem 1

We characterize aggregate efficiency via Theorem 1. To do so, we define a compensated
equilibrium, which is a useful fictional construct for proving results and constructing
sufficient statistics formulas.16

Definition 5 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, and wedges as
the original economy but where there is a representative agent with preferences as in Def-
inition 3. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

It is important to note that compensated equilibrium prices and quantities are not of
direct interest themselves, but are instead a useful stepping-stone to calculating changes
in aggregate efficiency.

The following result, which is a consequence of Theorem 1, shows that aggregate effi-
ciency is as simple as calculating welfare in an economy with a representative agent.

15For a formal definition, see Appendix B.
16This notion of the compensated equilibrium has many antecedents in prior work, for example it nests

the concept in Jones (2002) and Johansson et al. (2022), the Hicksian equilibrium in Baqaee and Burstein
(2023), the synthetic equilibrium in Debreu (1951), and is closely related to the adjusted price function in
Luenberger (1996). A major difference relative to these notions is that our compensated equilibrium need
not be efficient.
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Theorem 2 (Aggregate Efficiency Using Compensated Equilibrium). The aggregate con-
sumption equivalent variation can be calculated using the compensated equilibrium:17

A(t) = U(ccomp(t)) = Ycomp(t) = AKH,comp(t) = ARA,comp(t),

if either households can be exactly compensated or there are no wedges µ = 1.

Theorem 2 follows from the fact that the planner’s transfers in (4) coincide with the
expenditure choices of a compensated representative agent (who takes prices as given)
whenever either of the following sufficient conditions holds: (i) households are exactly
compensated, or (ii) the equilibrium is efficient µ = 1.18 If neither condition holds, then
Equation (4) still applies, but the solution may not be representable as a compensated
equilibrium with an “as-if” representative agent. We maintain the assumptions required
for Theorem 2 throughout, except in Section 6, where we abandon lump-sum transfers
and work directly with Theorem 1.

In words, Theorem 2 implies that aggregate efficiency, A(t), can be computed by solv-
ing for changes in the utility of the compensated representative agent in a Walrasian equi-
librium where the representative agent takes prices as given. The first equality, A(t) =

U(ccomp(t)), is the key; subsequent identities follow mechanically from the fact that the
compensated economy has a single representative agent. The importance of Theorem 2
lies in the fact that it allows every tool and result used to calculate welfare in homothetic
representative agent economies to be used to calculate aggregate efficiency with hetero-
geneous (and non-homothetic) preferences.

Theorem 2 is expressed in terms of endogenous variables in the compensated equilib-
rium. Solving that equilibrium is essentially the same as solving a representative–agent
model, which is well-understood problem. For this reason, we present the full character-
ization of variables in the compensated equilibrium in Appendix Section E.19 However,
we do note the following useful fact about the compensated equilibrium in this section.

Lemma 1 (Compensated equilibrium at the status quo). At the status-quo t = 0, prices and
quantities in the compensated equilibrium coincide with those in the decentralized equilibrium.

This lemma, which guarantees that compensated and decentralized variables coincide

17If there are multiple compensated equilibria, pick the one with the highest U(ccomp).
18Either condition is sufficient, and both may hold simultaneously. When µ = 1, the result follows di-

rectly from the first welfare theorem. If µ ̸= 1 but households are exactly compensated, the prices associated
with the planner’s solution in (2) still induce the representative agent to choose the same allocation.

19In Appendix A we also provide the expenditure function of the Hicksian representative agent in the
compensated equilibrium, since the expenditure function is a useful way to solve general equilibrium mod-
els.
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at the status-quo, is important for calibrating the model when solving for the compen-
sated equilibrium — expenditure shares at the compensated equilibrium must coincide
with observations in the absence of any shock (i.e. at the status-quo).

Before deploying Theorem 2 to construct heterogeneous-agent generalizations of well-
known results, we first point out an important, but highly restrictive, special case, where
our measure of aggregate efficiency coincides with the other popular alternatives.

3.4 A Miraculous Consensus

To set aside household heterogeneity, a standard benchmark is to assume every house-
hold has identical homothetic preferences and faces the same relative prices (i.e. there are
no household-specific wedges). Under this condition we obtain the following.

Proposition 1 (Miraculous Consensus). If households have identical homothetic preferences,
and face the same relative prices, then a positive representative agent exists and

A(t) = Y(t) = AKH(t) = ARA(t).

The first equality can break down if lump-sum transfers are not available.

In words, the change in aggregate efficiency, measured by the consumption-equivalent
variation, matches the change in chain-weighted index of real output, Kaldor-Hicks (cost-
benefit) efficiency, and the consumption-equivalent of the positive representative agent
all in the decentralized equilibrium. That is, under these assumptions, one can compute
A(t) without relying on the compensated equilibrium. Each of the underlying assump-
tions is individually essential: relaxing any one breaks the equivalence. The remainder
of the paper explores those more general settings and illustrates, through examples, why
our efficiency measure avoids the paradoxes of the alternatives when consensus fails. We
consider non-identical and non-homothetic preferences in Section 4, allow for different
households to pay different relative prices for the same goods (due to wedges) in Sec-
tion 5, and consider limits to redistribution (e.g. no lump-sum taxes) in Section 6.20

Proposition 1 is a consequence of Theorem 2. The reason is that, under the stated as-
sumptions, the price and quantity of each good in the compensated equilibrium coincides

20In this paper, we are focused on household heterogeneity, but even with a single household, the mirac-
ulous consensus breaks down when preferences are non-homothetic. This point is discussed in detail by
Baqaee and Burstein (2023). Intuitively, when preferences are non-homothetic, even for a single agent, scal-
ing the production possibility set (A(t)), the budget constraint (AKH(t)), and the equilibrium consumption
allocation (ARA(t)) do not coincide with one another since, as we shrink resources, the household would
want to change the bundle of goods they consume.
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with those in the decentralized equilibrium. This implies that A(t) = Ycomp(t) = Y(t),
since real output in the compensated and decentralized equilibrium only depend on the
prices and quantities of goods. The remaining two equalities are then standard.21

4 Competitive Economies with Lump-Sum Transfers

In this section, we characterize how aggregate efficiency responds to changes in produc-
tivity when both welfare theorems hold. This means that, for the remainder of this sec-
tion, we assume that all wedges, µ(t), are all equal to one (first welfare theorem holds)
and lump-sum transfers are available (second welfare theorem holds). We consider dis-
torted economies in Section 5 and economies without lump-sum transfers in Section 6.

We begin this section by providing some general comparative static results. We then
apply these results to some analytical examples to build intuition.

4.1 Comparative Statics for Changes in Technologies

Denote the Domar weight of each producer or factor i by

λi(t) =
pi(t)yi(t)

∑i′ pi(t)ci(t)
1{i is a producer}+ wi(t)zi(t)

∑i′ pi(t)ci(t)
1{i is a factor}.

This the sales of i divided by total final expenditures. Recall that for factor i, the quantity
of the factor is zi. The following is a well-known result characterizing changes in real
output in the decentralized equilibrium.

Proposition 2 (Hulten’s Theorem). The change in chain-weighted real output is

log Y(t) =
∫ t

0
∑

i
λi(s)

d log zi

ds
ds. (6)

The most well-known consequence of this result, given by differentiating with respect
to t, is that d log Y/dt = ∑i λid log zi/dt. This formula, which generalizes Solow (1957),
shows that the elasticity of real output to the productivity of producer i or the quantity of

21Under the stated assumptions, there is a positive representative agent with homothetic preferences,
and it follows from Shephard’s lemma that Y(t) = ARA(t) (see, e.g., Baqaee and Burstein, 2023). The final
equality in Proposition 1 follows from the fact that the indirect utility function of each agent, v(p, Ih) can
be written as Ih/P(p), where P(p) is an ideal price index. It then follows that, vRA(p, ∑h Ih), can be written
as (∑h Ih)/PRA(p). Hence, ARA(t) = vRA(p(t), ∑h Ih(t))/vRA(p(0), ∑h Ih(0)) = ∑h Ih(t)/(∑h Ih(0)) ×
P(p(0))/P(p(t)) = AKH(t).
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factor i is just the Domar weight of i. Using Theorem 2, we can easily state a version of
Hulten’s theorem that applies to our measure of aggregate efficiency instead.

Proposition 3 (Compensated Hulten’s Theorem). The change in aggregate efficiency at t is

log A(t) =
∫ t

0
∑

i
λ

comp
i (s)

d log zi

ds
ds. (7)

In Appendix E, we characterize λ
comp
i (s) explicitly as a function of the productivity changes

∆ log z, elasticities of substitution, and expenditure shares.

Differentiating (7) with respect to t and evaluating at t = 0 shows that, to a first-order
approximation, the change in aggregate efficiency, ∆ log A, coincides with the change in
real output in the competitive equilibrium ∆ log Y.

Corollary 1 (First Order Changes in Aggregate Efficiency). To a first-order approximation,
the change in aggregate efficiency is

∆ log A ≈ ∑
i

λ
comp
i (0)∆ log zi = ∑

i
λi(0)∆ log zi ≈ ∆ log Y.

The second equality follows from Lemma 1, which states that prices and quantities
in the compensated equilibrium t = 0 are equal to those in decentralized economy. In
other words, the first-order version of Hulten’s theorem applies unaltered to aggregate
efficiency.

Baqaee and Farhi (2019b) show that, to a second-order approximation, changes in real
output are given by

∆ log Y ≈ ∑
i

λi∆ log zi +
1
2 ∑

i
∆λi∆ log zi.

Differentiating (7) twice with respect to t and evaluating at t = 0, gives the following
extension of Baqaee and Farhi (2019b) to multi-agent settings.

Proposition 4 (Second Order Changes in Aggregate Efficiency). To a second-order approxi-
mation, the change in aggregate efficiency due to changes in primitives is

∆ log A ≈ ∑
i

λi∆ log zi +
1
2 ∑

i
∆λ

comp
i ∆ log zi,

where λi and ∆λ
comp
i are evaluated at status-quo. In Appendix E, we write ∆λ

comp
i explicitly

as a function of the productivity changes ∆ log z, microeconomic elasticities of substitution, and

21



expenditure shares in the status-quo.

Proposition 4 shows that discrepancies between aggregate efficiency ∆ log A and real
output ∆ log Y start at the second-order, since, generically ∆λ ̸= ∆λcomp (explicit formulas
are in Appendix E).22 The gap between ∆λi and ∆λ

comp
i arises because the compensated

agent’s demand responds differently to shocks than aggregate demand in the decentral-
ized economy. The compensated agent’s demand is constructed to preserve indifference
with status-quo for all households, whereas the decentralized aggregate demand comes
from utility maximization by households whose incomes evolve according to equilibrium
changes in relative factor prices.

4.2 Some Paradoxes of Real Output and Kaldor-Hicks

Having characterized A(t) in economies where the first and second welfare theorem hold,
we now contrast A(t) with real output, Y(t), and Kaldor-Hicks efficiency AKH(t).

Real Output. It is well-known that Divisia-based indices, like real output, suffer from
some paradoxes unless households have identical and homothetic preferences. Specif-
ically, if households do not have identical and homothetic preferences, then outside of
some knife-edge cases, the value of real output Y(t) can be any positive number, regard-
less of the technology parameters z(t) depending on the path of integration. The technical
reason is that log Y(t) is a line integral, and unless preferences are identical and homo-
thetic, the vector field defined by Domar weights is not conservative, making log Y(t)
dependent on the path of integration. See Hulten (1973) or more recently Baqaee and
Burstein (2023) for related discussions.

Hence, although A(t) and Y(t) coincide up to a first-order approximation at t =

0, they are not the same nonlinearly. Whereas λ(t) is not a conservative vector field,
λcomp(t) is a conservative vector field because it is always equal to the derivatives of
log A(t) at z(t).

Kaldor-Hicks. We now turn our attention to Kaldor-Hicks efficiency. Of course, if lump-
sum transfers are not available, then A(t) and AKH(t) are different, and we explore the
case with limited redistribution in Section 6. However, even when lump-sum transfers

22To derive an expression for ∆λcomp in terms of microeconomic primitives, we use the fact that ∆λcomp is
the change in Domar weights in a special case of the environment considered by Baqaee and Farhi (2019b)
where the consumption growth of each agent is treated as-if it is a final good, and there is a Leontief final
demand aggregator over final goods.
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are available, our measure need not coincide with AKH(t). The following proposition
illustrates this fact.

Proposition 5 (Paradox for Kaldor-Hicks Efficiency). For any change in technologies (move-
ments of the Pareto efficient frontier), the change in aggregate efficiency, measured using aggregate
consumption-equivalent variation, is weakly less than Kaldor-Hicks efficiency:

∆ log A ≤ ∆ log AKH.

For pure redistributions (movements along the Pareto efficient frontier), the change in aggregate ef-
ficiency, measured using aggregate consumption-equivalent variation, is zero, whereas the change
in Kaldor-Hicks efficiency can be positive:

∆ log A = 0 ≤ ∆ log AKH.

These inequalities are strict outside of knife-edge cases. The final inequality is a re-
statement of the so-called Boadway (1974) paradox. It states that AKH(t) assigns strictly
positive value to pure redistributions when relative prices respond to transfers.23

Figure 4 illustrates the Boadway paradox using a two-good, two-consumer economy.
Intuitively, redistributions lower the relative price of those goods that are more valued
by the losers. Hence, in the new equilibrium, it is relatively cheap to compensate these
households. Of course, such compensations are, in practice, infeasible because if they
were to occur, then relative prices would rise for those households that need compensa-
tion.24 Graphically, AKH evaluates efficiency by shifting the line tangent to the frontier at
c1 (the dashed line) until it reaches the status-quo c0. The increase in AKH depends on
how much the tangent line must be shifted inwards to reach the status-quo. In contrast,
A uses the frontier itself. Since both c0 and c1 are on the same frontier, ∆ log A = 0 in this
case.

In fact, it is possible to construct examples where the production possibility set of the
economy shrinks, C(t) ⊂ C(0), so that ∆ log A < 0, but ∆ log AKH > 0. This happens
if the decentralized equilibrium associated with C(t) has very different relative prices to
C(0). In this case, it is relatively cheap for the winners to compensate the losers under the
new prevailing prices.

There are some special cases where AKH(t) and A(t) coincide. First, A(t) and AKH(t)
coincide to a first-order approximation at t = 0 (assuming lump-sum transfers are avail-

23See also Blackorby and Donaldson (1990) for a related critique of the sum of compensating variations
as a measure of efficiency.

24See Jones (2002) for a detailed discussion.
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Figure 4: The sum of compensating variations is less than aggregate income since c0 is
below the dashed straight line.

able). Second, AKH(t) and A(t) coincide nonlinearly if relative prices do not depend
on final demand. This happens when the economy’s production possibility frontier is a
hyperplane, so the marginal rate of transformation, and hence relative prices, are deter-
mined by technology only.25 Under these conditions, the change in aggregate efficiency,
∆ log A, coincides with the change in Kaldor-Hicks efficiency as defined in Equation (5).
Given our assumption that production functions are all constant-returns to scale, the pro-
duction possibility frontier becomes a hyperplane whenever there is only one primary
factor of production.

Of course, there is another important reason (besides endogeneity of prices) why our
measure of efficiency can differ from the Kaldor-Hicks measure. The Kaldor-Hicks mea-
sure, by summing up compensating variations, implicitly assumes that lump-sum trans-
fers are available, so that winners can costlessly compensate the losers (assuming relative
prices are constant). By contrast, our definition of aggregate efficiency naturally extends
to allow for limited redistribution, as we discuss further in Section 6.

4.3 Analytical Examples

To build some intuition, we work through some analytical examples for how ∆ log A re-
sponds to changes in technologies. Appendix D provides more detailed derivations.

25See Proposition 10 in Appendix C for a formal statement.
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Example 2 (Regional Productivity Shocks). Consider households in different regions,
indexed by h, with preferences over tradeable goods and locally produced nontradeable
services:

uh(ch) = cα
hgc1−α

hs , ∑
h

chg = zg, chs = zhs.

The first equation shows that utility in each region depends on goods and services with
the expenditure share on goods equal to α. The second equation is the resource constraint
for goods, which clear at the aggregate level, since goods are traded. The third equation
is the resource constraint for services, which clear region-by-region, since services are not
traded. The parameters zg and zhs control the endowments of goods and services.

To calculate the status-quo (as well real output), we must make assumptions on factor
ownership. Suppose that households in region h own the local endowment of services
and own a share χh of the aggregate endowment of the traded good. This implies that,
in equilibrium, χh is the expenditures of each household as a share of total consumption
expenditures. The Domar weight on goods is λg = ∑h χhα = α and the Domar weight on
services in region h is λhs = χh(1 − α).

When productivities change, according to Proposition 2, the change in real output is

∆ log Y = α∆ log zg + (1 − α)Eχ [∆ log zs] ,

where Eχ [∆ log zs] is the average productivity shock to services weighted by the vector χ.
This expression is exact because in the decentralized equilibrium Domar weights do not
change (∆λ = 0). Furthermore, since the Domar weights are constant in the competitive
equilibrium, there is a positive representative agent with Cobb-Douglas preferences over
goods and services in all regions:

uRA(c) = cα
g ∏

h
cχh(1−α)

hs .

Since the positive representative agent has homothetic preferences, we also have that
∆ log Y = ∆ log ARA.

According to Proposition 4, the change in aggregate efficiency, to a second-order, is

∆ log A ≈ α∆ log zg +(1− α)Eχ [∆ log zs]−
1
2
(1 − α)2

α
Varχ [∆ log zs] ≤ ∆ log Y = ∆ log ARA.

The miraculous consensus of Proposition 1 fails because the agents do not have the same
preferences. As predicted by Corollary 1, ∆ log Y and ∆ log A do coincide to a first-order,
since the discrepancy scales in the square of ∆ log zs. The second-order approximation
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shows that ∆ log A is a concave envelope of ∆ log Y around the status-quo ∆ log z = 0 —
amplifying negative shocks and mitigating positive shocks to services relative to real out-
put. Intuitively, negative shocks to services are “more costly” since the losses cannot be
shared across regions, whereas the positive representative agent is “willing” to substitute
between regions with a unit elasticity.

Our next example uses Theorem 1 to apply a version of the popular Arkolakis et al.
(2012) (ACR) formula to economies with heterogeneous agents with non-homothetic pref-
erences.

Example 3 (Gains from Trade with Heterogeneous Non-Homothetic Preferences). Con-
sider a country with different consumers, h, that value domestic and foreign goods dif-
ferently:

uh(ch) =

[
(αh)

1
θh (uh(ch))

ζh c
θh−1

θh
hd + (1 − αh)

1
θh c

θh−1
θh

h f

] θh
θh−1

.

The parameter αh controls home bias for household h, θh > 1 is the compensated Arm-
ington elasticity, and the parameter ζh controls the degree of non-homotheticity for agent
h (preferences are homothetic if ζh = 0). The domestic good is produced linearly from
a labor endowment and trade is balanced. We consider the gains from trade relative to
autarky by raising iceberg trade costs to infinity.

The country trades with the rest of the world in the status-quo. We measure the
efficiency loss from autarky via the increase in the autarky consumption possibility set
needed to keep every consumer indifferent to the status-quo. With one domestic good,
this is simply the increase in the aggregate quantity of the domestic good.

Let shd denote household h’s budget share on the domestic good in the status-quo.
Replicating the argument from ACR, for the compensated representative agent in the
compensated equilibrium, losses from autarky are

∆ log A = − log Eχ

[
(shd)

1
1−θh

]
≤ 0. (8)

Note that (shd)
1

1−θh is the ACR formula for the gains from trade for a single agent. The
equation above shows that aggregate efficiency losses are the average of these individual
losses weighted by expenditures in the status-quo (denoted by χ).26 Interestingly, the

26Compare (8) to the representative-agent ACR formula. Suppose that agents have common homo-
thetic CES preferences with Armington elasticity θ. Then the losses from autarky are ∆ log ARA =

log
(

Eχ [shd]
1

1−θ

)
. If the Armington elasticities are the same, θh = θ, then the losses are larger with het-
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non-homotheticity plays no role in the sense that the utility elasticities ξi are not needed
to calculate ∆ log A. In particular, if there is a single agent, the equation above shows that
ACR holds without change even if preferences are non-homothetic as long as we use the
compensated Armington trade elasticity.27

To get more intuition, consider a second-order approximation of ∆ log A around au-
tarky:28

∆ log A ≈ Eχ

[
log shd
θh − 1

]
− 1

2
Varχ

[
log shd
θh − 1

]
. (9)

The first term is just an “average” version of the ACR formula in logs — the log ACR
formula is applied household-by-household and then averaged using households’ share
of aggregate income χh. The second term is the Jensen’s inequality term, and it lowers
aggregate efficiency if there is any heterogeneity in households’ exposure to traded goods
either due to variance in expenditure shares, shd, or trade elasticities, θh. In this sense,
heterogeneity raises the costs of autarky since some households are more exposed to trade
than average.

5 Distorted Economies with Lump-Sum Transfers

We now relax the assumption in the previous section that there are no wedges, and we
characterize how aggregate efficiency responds to changes in productivities and wedges.
One important comparative static we focus on is the efficiency losses from misallocation
— the increase in aggregate efficiency caused by the elimination of all wedges.

5.1 Comparative Statics for Changes in Technologies and Wedges

Theorem 2 means that we can convert results about real output into results about aggre-
gate consumption-equivalent variation by applying them to variables in the compensated
equilibrium. For example, consider the following generalization of Petrin and Levinsohn
(2012).

erogeneous agents due to Jensen’s inequality. For intuition, consider the case where some household h
consumes no home goods, i.e., shd = 0 for some h. In this case, ∆ log A = −∞ < ∆ log ARA because it is
impossible to compensate h in autarky.

27If preferences are non-homothetic, then there is a distinction between the compensated and uncompen-
sated trade elasticities. If we have estimates of the latter, one must use Slutsky’s equation to first convert
them into the compensated elasticities (see, e.g. Auer et al., 2024 ).

28This is an approximation in log shd
θh−1 around shd = 1. To derive this, we follow the strategy in Theorem 3

of Baqaee and Farhi (2019a) who consider the gains from trade with a homothetic representative agent.
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Proposition 6 (Changes in Aggregate Efficiency with Wedges). In response to changes in
wedges and productivities, the change in aggregate efficiency is

∆ log A =
∫ t

0
∑

i
λ

comp
i (s)

[(
1 − 1

µi(s)

)
d log ycomp

i
ds

+
1

µi(s)
d log zi

ds

]
ds.

In Appendix E, we characterize λ
comp
i (s) and d log ycomp

i /ds explicitly as a function of the pro-
ductivity changes ∆ log z, elasticities of substitution, and expenditure shares using the results in
Baqaee and Farhi (2020).

The compensated Domar weights, λcomp, and quantities, d log ycomp, can be computed
using standard methods for inefficient economies with homothetic representative agents
(see Appendix E).

We can contrast Proposition 6 with Harberger’s social welfare formula. In his classic
paper, Harberger (1971) argued that the welfare effect of a policy that changes quantities
{yi} over time should be computed as

∆ log Y(t) =
∫ t

0
∑

i

[
pi(s)− mci(s)

]dyi

ds
ds =

∫ t

0
∑

i
λi(s)

(
1 − 1

µi(s)

)
d log yi

ds
ds, (10)

where the equality uses the fact that final expenditure is the numeraire (∑i pi(s)ci(s) = 1
for every s). In words, he argued that whenever a good’s marginal benefit, pi(s), exceeds
its marginal cost, mci(s), then expanding its quantity (holding others fixed) raises aggre-
gate output. Proposition 6 extends this expression to measure the change in aggregate
efficiency.

5.2 Misallocation and the Distance to Pareto Frontier

We now focus on a particular counterfactual: we apply Proposition 6 to compute the
economic waste caused by distortions. Let µ be a vector of wedges. We measure economic
waste by how far the Pareto frontier can be contracted while keeping every agent at least
as well off as under the status quo.

Formally, denote the status-quo allocation by c0(µ) (we omit dependence on the trans-
fers that decentralize the status-quo) and the consumption possibility set by C(µ) (we
suppress productivity parameters since we hold them fixed). By the second welfare the-
orem, the Pareto frontier is C(1). The economic waste caused by distortions is measured
by

A
(
c0(µ), C(1)

)
.
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With a complete structural model this term can be computed using Theorem 2. However,
below we derive an approximation that is more intuitive and requires less information to
be applied.

Proposition 7 (Harberger Triangles). To a second-order approximation in log µ, the change in
aggregate efficiency is

∆ log A ≈ −1
2 ∑

i
λid log ycomp

i log µi, (11)

where d log ycomp
i ≡ ∑j

∂ log ycomp
i

∂ log µj
log µj is the change in the quantity of i caused by the wedges

in the compensated equilibrium. The approximation error is order log µ3. The derivatives and
expenditure shares in (11) are evaluated at the status-quo.29 We provide an explicit formula for
d log ycomp

i in terms of microeconomic primitives in Appendix E.

This proposition generalizes deadweight loss triangles to measure aggregate efficiency
losses from wedges in general equilibrium economies with heterogeneous agents and
non-homothetic preferences. The proof relies on translating results from Baqaee and Farhi
(2024) using Theorem 2.

There are two advantages to using Proposition 7 over and above simply applying
Proposition 6 using a fully-spelled out structural model. First, the Harberger triangles
formula can be used to get analytical intuition for misallocation costs through the use of
loglinearized expressions, as demonstrated below. Second, it is possible to populate the
terms in (7) with considerably fewer assumptions about the primitives of the economy —
e.g. the drivers of distortions, productivity processes, and so on.

The intuition for (11) is familiar — a wedge on i is more costly the higher is the Domar
weight and the more elastic is the quantity of i relative to the wedge. However, com-
pared to a representative agent model with homothetic preferences, the relevant notion
of elasticity here is the one in the compensated equilibrium, not the decentralized one.

5.3 Analytical Examples

We provide some pen-and-paper examples to build intuition.

Example 4 (Misallocation when Markups Vary by Household). Consider the misalloca-
tion problem studied by Hsieh and Klenow (2009), but suppose there are multiple agents.
Each agent h has CES preferences over consumption goods with elasticity of substitution

29Usually, such quadratic expansions are evaluated at the undistorted point. However, since λi and
d log ycomp

i are multiplied by one power of log µ, evaluating these terms at status-quo wedges changes the
expression only at the third order. Hence, the stated approximation remains valid to a second-order.
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θh. We consider a situation in which each agent pays potentially a different markup µhi

on each good i.30 Suppose that all consumption goods are ultimately produced linearly
from a single common primary factor called labor, which is inelastically supplied.

We can apply Proposition 7 to write the aggregate efficiency losses, up to a second
order approximation as

∆ log A ≈ 1
2

Eχ

[
θhVarbh [logµh|h]

]
, (12)

where the expectation uses the vector of household income shares, χ, and the variance
uses household budget shares over goods, bh, as weights.31 Since A > 1 means the
efficient consumption possibility set can be contracted (scaled by 1/A) while holding
everyone indifferent, the larger ∆ log A, the greater the losses. If all agents have the same
preferences and face the same wedges, then the expectation in (12) disappears, and the
equation collapses to the single agent case, equation (19), in Baqaee and Farhi (2020).

In words, the reduction in efficiency caused by the markups depends on the average
variance in markups paid by each household multiplied by that household’s elasticity
of substitution. Intuitively, if θh is very high, then dispersion in markups faced by h
causes a greater reduction in aggregate efficiency. Furthermore, aggregate efficiency falls
by more if richer households (those with higher χh) are exposed to more markup dis-
persion. Importantly, this expression does not depend on the level of markups paid by
each household. A proportional scaling of all markups paid by any household would
leave this expression unchanged because increasing all markups on a single household is
equivalent to a lump-sum tax on that household, and has no effect on aggregate efficiency.

The next example applies equation (12) to study the efficiency losses due to imperfect
insurance.

Example 5 (Misallocation Due to Financial Market Incompleteness). Consider agents
with expected utility

uh(ch) = ∑
s

ch(s)1−1/θ

1 − 1/θ
.

States of nature, indexed by s, are all equally likely. The coefficient of relative risk aversion
is 1/θ (or equivalently, the elasticity of substitution across states is θ).

30Formally, hi indexes the intermediary between good i and household h. We assume that this intermedi-
ary charges a markup of µhi on its marginal cost. The intermediary’s marginal cost is just the price of good
i.

31Formally written out, (12) is = 1
2 ∑h χhθh ∑n bhn [log µhn − ∑n′ bhn′ log µhn′ ]2.
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Each agent h has income yh(s) = ah + ϵh(s), where ϵh(s) is an idiosyncratic shock
that sums to zero across agents, ∑h ϵh(s) = 0 for every s, with mean zero for each agent
E[ϵh(s)|h] = 0. The status-quo allocation is financial autarky, so h’s consumption in state
s is c0

h(s) = yh(s). The aggregate resource constraint for the economy is ∑h ch(s) = ∑h ah,
because, by assumption, ∑h ϵh(s) = 0 for every s.

To decentralize this allocation using wedges, suppose that there are complete state-
contingent markets with household-by-state wedges µh(s). Household h’s budget con-
straint can be written as

∑ µh(s)ch(s) = ah.

The wedges that decentralize the status-quo allocation must satisfy

c0
h(s)

c0
h(s

′)
=

[
µh(s)
µh(s′)

]−θ

.

Substituting these wedges into equation (12) implies that the gains from completing fi-
nancial markets are approximately given by:

∆ log A ≈ 1
2

θEχ [Var [log µh(s)|h]] =
1
2

1
θ

Eχ [Var [log ch(s)|h]] ,

where χh is household h’s expected share of consumption in the status-quo, ah/ ∑h′ ah′ .
This formula disregards inequality due to dispersion in the persistent component of in-
come (dispersion in consumption caused by ah) because the variance is conditional on
household h. Instead, misallocation depends on the average conditional consumption
variance, weighted by household income. Holding the consumption process fixed, the
gains from completing financial markets are larger, the higher is the risk aversion 1/θ

parameter.

The example above is simple, but hints at a much more general idea. Baqaee and
Burstein (2025b) build on this basic idea to analyze and quantify the losses from financial
market imperfections in both open and closed economies. In that paper, we discuss how
to allow for dynamics, labor-leisure choice, capital accumulation, borrowing constraints,
and international trade.

The final example in this section shows that misallocation, as measured by ∆ log A,
need not equal to changes in real output, ∆ log Y, or changes in the welfare of a represen-
tative agent, ∆ log ARA, even in cases where a representative agent exists.

Example 6 (Real Output and Positive Representative Agent Losses from Markups).
Suppose each agent h’s has CES preferences over consumption goods with elasticity of
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substitution θh. Suppose each agent consumes a different selection of goods but all goods
are produced linearly from the labor endowment. The markup on the ith good consumed
by household h is denoted by µhi. Suppose that we eliminate markups, each households’
share of income, χh, stays constant. Since the distribution of income is constant, there
is a positive (and in this case, also normative) representative agent with Cobb-Douglas
preferences across each households’ consumption bundle (i.e. an agent whose utility is
maximized by observed allocations). The change in the welfare of this representative
agent, in consumption-equivalent terms, is equal to the change in chain-weighted real
output, and both are equal to a second-order approximation to

∆ log Y = ∆ log ARA ≈ 1
2

Eχ

[
θhVarbh [logµh|h]

]
︸ ︷︷ ︸

≈∆ log A

+
1
2

Varχ
[
Ebh [logµh|h]

]
,

where we use (12). The change in real output and the welfare of the representative agent
are (weakly) larger than the change in aggregate efficiency. One limiting case of this is
where all markup-variation is at the household level. In this case, ∆ log A = 0 because
the economy is already on the efficient frontier and eliminating markups is purely redis-
tributive. However, in this example, ∆ log Y = ∆ log ARA > 0.

We can push this example even farther: suppose again that all markup-variation is at
the household level, and as we eliminate all markups, we also change the productivity
of labor by ∆ log z < 0 at the same time. In this case, the change in chain-weighted real
output is

∆ log Y ≈ ∆ log z +
1
2

Varχ
[
Ebh [logµh|h]

]
,

whereas ∆ log A = ∆ log z. Hence, if the physical productivity shock is small enough,
then real output rises, even though the Pareto frontier shifts inwards.

To summarize, in this example, ∆ log Y and ∆ log ARA can assign a positive value to a
pure transfer, and a positive value to a strictly smaller production possibility set.

6 Aggregate Efficiency with Limits to Redistribution

In this section, we extend the analyses in Sections 3 to 5 to allow for imperfect redis-
tributive tools. This is another advantage of our approach relative to measures based on
adding up willingness-to-pay across all households (e.g. as in Kaldor-Hicks). Intuitively,
when we add up willingness-to-pay, we implicitly assume that winners can compensate
losers. In Section 4, we illustrated one issue with this approach: monetary compensations
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can change relative prices so that, in practice, the necessary compensations are infeasible.
In this section, we focus on a second issue — monetary compensations may be infeasible
because lump-sum transfers are not available.

Theorem 1 applies regardless of what redistributive tools are available. In this section,
we apply Theorem 1 to the case where redistribution can only be achieved via linear
taxation in general equilibrium with wedges.

6.1 General Solution with Linear Taxes

Consider a decentralized equilibrium with technologies z and wedges µ. We allow a
vector of linear taxes τ on different goods, and let the vector T dictate the amount of tax
revenues sent to each household. We require budget-balance, so that total tax revenues
must equal total transfers to households. Index the equilibrium consumption allocation
c(z,µ, τ ,T ) by technologies, z, wedges, µ, and the tax-and-transfer scheme, (τ ,T ).

Let the set of all feasible tax-and-transfer schemes be T (z,µ). The case with lump-sum
transfers studied in Section 4 and Section 5 is the special case that places no non-negativity
constraint on the vector T so that redistribution is accomplished without linear taxes. In
this section, we allow for the possibility that this set has other restrictions. For example,
the feasible set T , may allow for only distortionary linear taxes on some subset of goods,
limit lump-sum transfers to be non-negative, and so on.

Corollary 2 (Aggregate Efficiency with Restricted Tax-and-Transfer Instruments). Theo-
rem 1 implies that aggregate efficiency satisfies:32

A(z,µ) = max {U (c(z,µ, τ ,T )) : (τ ,T ) ∈ T (z,µ)} . (13)

That is, aggregate efficiency is given by the highest utility U(c) that can be achieved by choos-
ing feasible taxes and transfers, (τ ,T ) ∈ T (z,µ), taking into account how those choices affect
consumption, c, and in turn utility, U.

In words, A(z,µ) measures the maximum contraction (or minimum expansion) of the
set of feasible equilibrium consumption allocations, given technologies, z, wedges, µ, and
tax-and-transfer instruments, (τ ,T ). Corollary 2 applies to the special cases considered
in Section 4 and 5, where we assume that the feasible set of instruments, T , consists only
of unrestricted lump-sum transfers.

32If there are multiple equilibria, then c(z,µ, τ ,T ) is a correspondence and the maximization is applied
to the set of potential equilibrium allocations. We could equivalently write A(z,µ) = maxc∈C(z,µ) U(c),
where the consumption possibility set is C(z,µ) = {c(z,µ, τ ,T ) : (τ ,T ) ∈ T (z,µ)} .
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As before, we index technologies and wedges by a scalar t and let t = 0 denote the
status-quo. Figure 5 illustrates A(t) using a two household example. In the figure, the
status-quo allocation, c(0), and the decentralized allocation without transfers, c(t), are
denoted by red circles. The solid blue line shows the feasible consumption possibility
frontier at t given distortionary taxation, and the dashed line indicates the frontier at t
given unrestricted lump-sum taxes. The two frontiers touch at the decentralized point,
since the decentralized point does not engender any distortionary redistributive taxation.
However, the solid blue set is strictly smaller than the dashed line since distortionary tax-
ation limits the set of feasible redistributions. The change in efficiency, ∆ log A, is still the
largest radial contraction of C(t) that allows every household to be made at least indif-
ferent to the status-quo. Since the larger is the possibility set C(t), the more it must be
contracted to reach indifference, aggregate efficiency gains are larger with better redis-
tributive tools.
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Figure 5: Aggregate efficiency is measured by the maximal radial expansion of the feasible
set necessary to achieve indifference.

The following is a generalization of Proposition 4 to this setting.

Proposition 8 (Productivity Shocks with Limited Redistribution). Consider a perfectly com-
petitive status-quo without linear taxes and wedges. If households can be exactly compensated,
then response of aggregate productivity to a productivity shock, ∆ log z, to a second-order approx-
imation, is given by

∆ log A = ∑
i

(
λi +

1
2 ∑

j

∂λ
comp
i

∂ log zj
∆ log zj

)
∆ log zi +

1
2 ∑

i
λi

(
∑

j

∂ log ycomp
i

∂ log τj
∆ log τ∗

j

)
∆ log τ∗

i ,

(14)
where τ ∗(t) are the maximizers in (13).
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The first set of summands are exactly as in Proposition 4. The second set of summands,
which are new and non-positive, capture the inefficiency caused by imperfect redistribu-
tion. These are the sum of Harberger triangles associated with the linear taxes in τ∗(t).
If lump-sum taxation is not feasible, then linear taxes must be used, ∆ log τ∗ ̸= 0, and
aggregate efficiency with limited redistribution is lower than with lump-sum taxation by
exactly the sum of deadweight loss triangles. That is, the response of aggregate efficiency
to productivity shocks is the same as it would be if lump-sum transfers were possible
minus the deadweight loss triangles associated with distortionary taxes. The simplicity
of Equation (14) follows from the fact that the status-quo is undistorted. This ensures that
(1) there are no interactions of taxes with pre-existing distortions, (2) the cross-partials be-
tween d log τ∗ and d log z are all zero due to the envelope theorem. In contrast, Corollary 2
does not require that the status-quo be undistorted.

The following simple corollary, obtained by ignoring the second order terms, shows
that Hulten’s theorem holds, without change, even with limited redistribution, as long as
outcomes are interior.

Corollary 3 (Hulten’s Theorem with Limited Redistribution). Consider a perfectly compet-
itive status-quo without linear taxes and wedges. If households can be exactly compensated, the
response of aggregate productivity to a productivity shock, ∆ log z, to a first-order approximation,
is given by

∆ log A = ∑
i

λi∆ log zi.

Intuitively, the losses from costly-redistribution are second-order, and hence to a first-
order approximation, only the direct effects of the productivity shock matter (assuming
we start at a competitive equilibrium).

6.2 Analytical Example: Losses from Autarky

We now study the efficiency gains from international trade, accounting for limited redis-
tribution. We use the approximation in Proposition 8 to provide intuition. We check the
numerical performance of the second-order approximation by computing exact results
using (13).

Example 7 (Gains from Trade with Limited Redistribution). We revisit Example 3, which
studied the gains from trade, but this time we incorporate limits to redistribution. We add
a labor-leisure margin, and assume redistribution can only be done by taxing consump-
tion.
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Suppose there are two households, and household h has nested-CES preferences over
domestic consumption goods, chd, imported consumption goods, ch f , and leisure lh:

uh(ch) =

(1 − γh)
1
ρ

[
(1 − αh)

1
θ c

θ−1
θ

hd + αh
1
θ c

θ−1
θ

h f

] θ
θ−1

ρ−1
ρ

+ γ
1
ρ

h l
ρ−1

ρ

h


ρ

ρ−1

.

The model in Example 3 did not feature the leisure good. The inner nest combines domes-
tic and foreign consumption goods with Armington elasticity θ and home bias controlled
by the parameter αh. The outer nest combines the goods bundle with leisure with elas-
ticity of substitution ρ and share parameter γh.33 The parameter ρ controls the Frisch
elasticity of labor supply.

Household h is endowed with one unit of time and ah efficiency units of labor and
faces a budget constraint:

τpdchd + τp f ch f = wah(1 − lh) + Th,

where pd and p f denote the price of each consumption good, wh is the wage per effi-
ciency unit, τ is the gross-tax rate on consumption, and Th is a lump sum transfer. Bud-
get balance requires (τ − 1)∑(pdchd + p f ch f ) = ∑ Th. The domestic consumption good
is produced linearly with labor, so the resource constraint for domestic consumption is

∑h chd = ∑h ah(1 − lh), with pd = w. The resource constraint for leisure is lh ≤ 1.
The status-quo is a competitive equilibrium without taxes in which the country trades

with the rest of the world. We consider the gains from trade relative to autarky, by rais-
ing iceberg trade costs to infinity. The efficiency loss from autarky, ∆ log A, measures
the increase in the autarky consumption possibility set needed to keep every consumer
indifferent to the status-quo. The consumption possibility set encodes the potentially dis-
tortionary impact of taxes required to transfer income between households. We compare
two cases: (1) lump-sum taxation is available and the second welfare theorem holds; (2)
lump-sum taxation is not available, Th ≥ 0, and linear consumption taxes must be used.

Let

Ωhd =
p0

dc0
hd + p0

f c0
h f

w0ah

denote household h’s budget share on consumption in the status-quo as a share of the
value of h’s total time endowment (the remainder is implicit expenditures on leisure).

33For simplicity of exposition, we abstract from non-homotheticities and differences in elasticity param-
eters across households. It is simple to extend the model in this way.
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For simplicity of exposition, and since it is fairly realistic, we assume that both households
work the same number of hours in the status-quo, which implies that Ωhd = Ωd does not
vary by household. Let shd denote household h’s share of expenditures on the domestic
consumption good relative to all consumption goods:

shd =
p0

dc0
hd

p0
dc0

hd + p0
f c0

h f
.

Lump-Sum Taxation. With lump-sum taxation, using Proposition 4, we can write the
losses from autarky to a second-order approximation as

∆ log Alump-sum ≈ ΩdEχ

[
log sh
θ − 1

]
︸ ︷︷ ︸

1st order

− 1
2

Ω2
dVarχ

(
log sh
θ − 1

)
+

1
2
(ρ − 1)Ωd(1 − Ωd)Eχ

[[
log sh
θ − 1

]2
]

︸ ︷︷ ︸
2nd order with lump-sum taxation

.

This expression is identical to Equation (9) in Example 3 when there is no leisure, Ωd =

1. The first and second summands are the same as in (9) but are now scaled by Ωd to
account for the fact that households also consume leisure. The final summand, which
is absent in (9), accounts for complementarities/substitutabilities between consumption
and leisure. If consumption and leisure are complements, ρ < 1, then a negative shock
to consumption caused by autarky reduces the value of leisure through complementarity,
raising the gains from autarky.

Linear Taxation. Now consider the case where lump-sum taxation is unavailable so that
lump-sum transfers must be non-negative: T ≥ 0, financed by a uniform consumption
tax. Proposition 8 now implies that, to a second-order approximation,

∆ log Alinear tax ≈ ∆ log Alump-sum − 1
2

ρΩd(1 − Ωd)(d log τ∗)2

︸ ︷︷ ︸
2nd order losses from distorting taxes

,

where τ∗ is the optimal consumption tax in Equation (13).
Index the two households by h and h′ and suppose that h is more exposed to foreign

goods: shd < sh′d. This means that, in the decentralized equilibrium, household h is more
negatively affected by the trade shock than h′. In this case, the optimal feasible tax-and-
transfer from (13) sends all collected tax revenues to h. Furthermore, to a first-order, the
tax required for the compensation is d log τ∗ = χh

θ−1 [log sh′d − log shd] > 0, where χh is h’s
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share of aggregate income.
The required consumption tax is larger the bigger is the heterogeneity in exposure to

the trade shock, and the larger is household h’s share of aggregate income. A given tax
is more distorting the higher is ρ, which controls substitution between consumption and
leisure (ρ can be interpreted as the Frisch elasticity of labor supply), and the closer is Ωd

to 1/2. If Ωd is equal to either one (households do not value leisure) or zero (households
do not value consumption), then there is no distortion from the tax.

Example 7 numerically illustrates the performance of the second-order approximation
to the exact solution with distortionary linear taxes, and compares them both to the so-
lution with lump-sum taxes. The second-order approximation performs well even for
large shocks. Panel 6a uses ρ = 0.5, so consumption and leisure are complements and the
Frisch elasticity of labor supply is a reasonable 0.5. Since ρ is low, distortionary taxes are
able to achieve an outcome that is roughly as good as lump-sum taxes. Panel 6b uses a
much higher ρ = 3. In this case, the gap between the lump-sum and linear taxation sce-
narios is larger since consumption taxes reduces labor and increase leisure, which causes
efficiency to fall.
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(b) ρ = 3.0

Figure 6: A numerical example of the losses from autarky with and without distortionary
redistribution. The other parameter values are Ωd = 0.5, χh = 0.5, θh = 3, shd = 3sh′d.

To summarize: losses from autarky are larger if some households are more badly af-
fected than others, especially if efficient redistributive tools are not available to compen-
sate the households that are more badly affected.

In Appendix D, we consider another example, where skill-biased technical change
affects different workers differently, and show how the second order approximation in
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Proposition 8 performs.

6.3 Quantitative Example: the China Shock

Our final example uses an off-the-shelf quantitative trade model to quantify the aggre-
gate efficiency effects of international shocks. We consider the effect of the rise of China
on the United States using the Armington model in Baqaee and Farhi (2024). Each coun-
try has different factor endowments, and we treat owners of different factor endowments
as different agents. The rise of China, which we model by raising Chinese productiv-
ity, changes relative wages amongst the different domestic factors, with different conse-
quences for different agents. We study how aggregate efficiency for the US changes as
China becomes more productive, as measured by the aggregate consumption equivalent,
and we study how this number changes depending on assumptions about factoral mobil-
ity (across sectors) and the availability of tax and transfer tools.

Summary of Calibration. The calibration follows Baqaee and Farhi (2024). The model
has 40 countries and 30 industries in each country. Production by each industry is a
nested CES aggregator combining four domestic primary factors (low-, medium-, high-
skill labor, and capital) with intermediate inputs. The intermediate input bundle used by
each industry is a nested CES aggregator cover all industries and origin countries. All
households in each country consume the same domestic consumption bundle, which is a
nested CES aggregator over all industries and origin countries. (We abstract from hetero-
geneity in preferences within countries). The initial expenditure shares are all calibrated
according to the World Input-Output Database in 2008. Since tariffs in 2008 were quite
low, the model is calibrated assuming there are no import tariffs.34

China Shock. In 2008 (the calibration year), China’s GDP is roughly 5% of the world’s.
By 2023, this number had risen to 18%. We model the rise of China through an increase in
Chinese factor-augmenting productivity growth (roughly tripling the efficiency units of
all Chinese factor endowments) to ensure that China’s share of world GDP rises to 18%.

We consider how this shock affects the United States, measured using the aggregate
consumption equivalent change, under four different scenarios. Each scenario defines a

34The elasticity of substitution between primary factors is set to one. The elasticity of substitution be-
tween value-added and intermediates is 0.5. Each country-industry pair has a unique bundle of interme-
diate inputs sourced from different industries with elasticity of substitution 0.2. Each country also has
a unique consumption bundle, with elasticity of substitution across industries of 0.9. Every destination
country-industry pair purchases a unique bundle of inputs from other industries sourced from different
origin countries. The Armington trade elasticity is equal to 5.
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different consumption possibility set C for US consumers, depending on the tools avail-
able to the government. These scenarios are:

i. Laissez-faire: there are no redistributive tools available. The consumption possibility
set is a single point corresponding to the decentralized equilibrium in the US.

ii. Tariffs with non-targeted rebates: the government can raise a uniform tariff on all im-
ports but any revenues generated by tariffs are rebated back to domestic households
in proportion to their pre-shock initial share of aggregate income.

iii. Tariffs with targeted rebates: the government can raise a uniform tariff on imports
and has full discretion on how to rebate any additional tariff revenues (i.e. if tariff
revenues rise after the shock, in units of world GDP, then the government can choose
who to rebate that additional revenue to).

iv. Tariffs with lump-sum transfers: the government can raise a uniform tariff on imports,
and also has access to unrestricted lump-sum transfers (i.e. lump-sum transfers can
be positive or negative).

In scenarios ii., iii. and iv., the consumption possibility set is the set of equilibrium con-
sumption allocations for US consumers given different levels of uniform import tariffs
and feasible transfers.

We now turn to the choice of the status quo. We assume that the 2008 data correspond
to laissez-faire in which all taxes are zero. If we were to treat this as the status quo, then
even without the China shock our efficiency measure would detect A > 1, reflecting
the gains from optimal tariffs. Our focus is not on quantifying these tariff gains, but to
illustrate how an imperfect redistributive tool — here, an import tariff —influences the
aggregate efficiency implications of the China shock.

We therefore assume that, if an import tariff is available (scenarios ii, iii, iv), then that
import tariff is already set to maximize the quantity of the US consumption good prior to
the China shock. This ensures that the status-quo allocation is not Pareto dominated by
other allocations in the feasible status-quo consumption possibility set (i.e. in the absence
of the China shock, aggregate efficiency is 1 by construction in every scenario). Neverthe-
less, to keep the status-quo allocation similar to the data in 2008 — which we calibrate the
lessaiz faire model to — we assume that US tariffs provoke symmetric retaliation from the
rest of the world. As a result, the optimal US tariff in the status-quo is small anyhow (2.3%
in the case without factor mobility and 1.0% in the case with factor mobility), ensuring
that expenditure shares in the status-quo are close to the 2008 data prior to the shock.
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Solution Strategy. To solve for aggregate efficiency, note that if we substitute the defi-
nition of U(c) into (13), we get

A(z,µ) = max
{

min
h

ũh (ch(z,µ, τ ,T )) : (τ ,T ) ∈ T (z,µ)
}

.

We make this max-min problem more computationally tractable, by noting that it is
equivalent to

A(z,µ) = max {x : (τ ,T ) ∈ T (z,µ), ũh (c(z,µ, τ ,T )) ≥ x} ,

where we replace the inner minimum with a series of constraints instead. This reduces
the max-min problem to a simpler constrained maximization problem that can be solved
easily on a computer.

Results. The change in aggregate efficiency due to the China shock is shown in Ta-
ble 1. We consider two specifications of the model, labelled “immobile” and “mobile”
factors. When factors are “immobile”, primary factors (labor and capital) in each country-
industry pair cannot move across industries. When factors are mobile, there is one na-
tional market for each factor type (low-, medium-, high-skill labor and capital) and all
industries in a country hire from the national market. Comparing these two specifica-
tions reveals the importance of reallocation for determining aggregate efficiency.

Table 1: Effect of China Shock on the United States

Scenario Immobile Factors Mobile Factors

∆log A ∆ Tariff (p.p.) ∆log A ∆ Tariff (p.p.)

Tariffs & lump-sum transfers 0.008 +0.1 0.010 +0.3
Tariffs & targeted rebates -0.010 +7.4 0.010 +0.4
Tariffs & non-targeted rebates -0.179 +11.4 0.008 +1.6
Laissez-faire -0.235 – 0.008 –

Tariff changes are expressed in percentage points.

The first row shows the change in aggregate efficiency for the US, assuming there
are lump-sum transfers. In this case, Proposition 1 holds, and the response of ∆ log A
coincides with the response of aggregate real consumption in the US. This also coincides
with real consumption by the representative US household, as well as the change in the
Kaldor-Hicks measure of efficiency. In this case, ∆ log A rises by around 1 log point in
response to the China shock.
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The second row considers the case where import tariffs are available, but redistribu-
tion can only draw on excess tariff revenues. In this case, ∆ log A falls by 1 log point if
factors cannot move across sector. This is because the China shock causes real wages in
some sectors to fall. To compensate these households, we must raise tariff revenues by
around 7%. These tariffs, which trigger retaliatory tariffs from the rest of the world, cause
overall efficiency to decline. In other words, in order to make every US household at least
as well off after the China shock requires expanding the consumption possibility set by 1
log point. The picture is very different if factors are mobile, since in this case, real wages
do not decline, and hence large tariffs are not needed to offset real income losses suffered
by some subset of households.

The third row considers the case where tariff revenues can only be distributed accord-
ing to a fixed distribution (pre-shock initial income shares). In this case, since the redis-
tributive tools are much more severely restricted, it is much harder to compensate losers
(it may not be possible to equalize the change in real consumption across consumers).
Accordingly, aggregate efficiency falls by 17.9 log points, since compensating workers in
losing industries requires instituting very large tariffs (of around 11.4%), which then trig-
ger a large trade war. Once again, these restrictions on redistributive policy are much
less important if factors are mobile across sectors, with the overall efficiency gains being
barely affected.

The last and final row considers the Laissez-faire case, where ∆ log A simplifies to be-
ing simply the change in real consumption for the workers whose real wages decline the
most in Lessaiz-faire. When factors are immobile, this is “Textile and Leather Products,”
where real wages decline by around 23 log points in response to the China shock. The
contrast with the mobile factor case is very stark: when factors are mobile, heterogeneous
effects among factors is substantially attenuated, and so the change in aggregate efficiency
closely approximates that under full redistribution.

The results in Table 1 show that the change in aggregate efficiency depends strongly
on (a) the extent to which shocks have asymmetric effects on households, and (b) the re-
distributive tools available. Note that although the redistributive tools are very important
for quantifying the change in aggregate consumption equivalents in Table 1, we do not
take a stance on how these redistributive tools should be used in practice. For example, if
lump-sum transfers are available, then the consumption possibility set can be contracted
by 1% and everyone can be kept at least indifferent. Hence, after the shock and compen-
sations, there is a 1% surplus of the consumption good. We measure this surplus without
taking a stance on how it should be distributed.
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7 Conclusion

This paper defines a measure of aggregate efficiency using the aggregate consumption-
equivalent variation. We establish that this measure can be computed by maximizing
utility of some fictional agent. This provides a method for translating theorems and tools
about representative-agent economies to study aggregate efficiency in economies with
heterogeneous agents. This includes Hulten (1978), Harberger (1964), Petrin and Levin-
sohn (2012), Arkolakis et al. (2012), and Baqaee and Farhi (2019b) and Baqaee and Farhi
(2020).

In two stand-alone companion papers, we apply the theoretical results of this paper
to other contexts where household heterogeneity is central. Baqaee and Burstein (2025b)
consider losses in aggregate efficiency from financial market incompleteness, within and
across borders. Baqaee and Burstein (2025a) characterize aggregate efficiency in random
utility models with discrete choice, focusing on spatial economies, where households
make different choices due to differences in their preferences. An interesting extension,
which we do not pursue in this paper but pursue in ongoing work, is to study policy
problems where maximizing aggregate efficiency is the objective of the policymaker.35
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Appendix A Expenditure Function of Compensated Agent

The following proposition characterizes the expenditure function of the compensated
agent.

Proposition 9 (Dual Representation of Hicksian Representative Agent). The expenditure
function associated with U(c), in Definition 3, denoted by E(p, U) is

E(p, U) =

(
∑

h∈H
eh(p; uh(c

0
h))

)
U.

By Shephard’s lemma, the budget share of the Hicksian representative agent on good i, denoted
bcomp

i , is

bcomp
i (p) =

∂ log E(p, U)

∂ log pi
= ∑

h

eh(p, u0
h)

∑h′ eh′(p, u0
h′)

bhi(p, u0
h),

where bhi(p, u0
h) is the compensated budget share of household i at the status-quo indifference

curve u0
h ≡ uh(c

0
h).

In words, the compensated agent’s budget share on each good i is the average com-
pensated budget share of all households, where each household is weighted according to
its compensating income, eh(p, u0

h).
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Given compensated aggregate budget shares, bcomp
i (p), we can solve for equilibrium

variables in the compensated equilibrium including prices pcomp. Setting aggregate spend-
ing to be the numeraire in the compensated equilibrium, and using Theorem 2, we know
that

A(t) = U(t) =
1

∑h∈H eh(p
comp(t); uh(c

0
h))

= AKH,comp(t).

Appendix B Definition of Positive & Normative Represen-

tative Agent

We follow the definitions in Mas-Colell et al. (1995). We say that uRA : RN → R is a
positive representative agent if the Marshallian demand curves generated by uRA, given
prices and total income, coincide with equilibrium allocations given the same prices and
aggregate income:

arg max
c

{uRA(c) : ∑
i

pi(t)ci ≤ I(t)} = ∑
h

arg max
ch

{uh(ch) : ∑
i

pi(t)chi ≤ Ih(t)}.

The positive representative agent, uRA : RN → R, is a normative representative agent rel-
ative to the social welfare function W if for every (p(t), I(t)), the distribution of wealth
across households, denoted by {Ih(t)}, also maximizes

W(v1(p(t), I1(t)), . . . , vH(p(t), IH(t)))

subject to ∑H
h=1 Ih(t) = I(t), where vh is the indirect utility function of agent h.

Appendix C Proofs

Proof of Theorem 1. Denote the solution to (1) by ϕ∗, and an allocation that attains this
solution (it does not need to be unique) by c∗ ∈ (ϕ∗)−1C. By the definition of ϕ∗ and U(·),
and given local nonsatiaton, U(c∗) = U(c0) = 1. Define the value to the compensated
agent of the set C by V(C) = maxc∈C U(c). Denote the solution to V(C) by c∗∗, with c∗∗ ∈
C. Since U(·) is homogeneous of degree 1, it follows that V((ϕ∗)−1C) = (ϕ∗)−1V(C), with
solution (ϕ∗)−1c∗∗. Note that V

(
(ϕ∗)−1C

)
≥ 1 because c∗ ⊆ (ϕ∗)−1C and U(c∗) = 1.

Moreover, V
(
(ϕ∗)−1C

)
= 1 because, if it were strictly higher than 1, the solution to (1)
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would be higher than ϕ∗. It thus follows that:

V(C) = V(C)
V ((ϕ∗)−1C)

= ϕ∗.

Proof of Theorem 2. Recall that C(t) = C(z(t),µ(t)) is the set of consumption allocations
that can be attained in general equilibrium with transfers. Define

c∗(t) ∈ argmax {U(c) : c ∈ C(t)} .

From Theorem 1, we know that U(c∗(t)) = A(t). We suppress t to simplify notation.
First, suppose that µ = 1, so that the compensated equilibrium (which has a price-

taking representative agent) must maximize U(c) among all technologically feasible allo-
cations (by the first welfare theorem). In particular, this implies that U(ccomp) ≥ U(c∗)

since c∗ is technologically feasible. By the first welfare theorem, it must also be the
case that the consumption allocation c∗ is Pareto-efficient because c∗ is a competitive
equilibrium. If U(ccomp) > U(c∗), this implies that ũh(c

comp
h ) > ũh(c

∗
h) for every h

and ccomp is technologically feasible. This would violate Pareto efficiency of c∗. Hence
U(ccomp) = U(c∗) = A.

Now suppose that µ ̸= 1 and that every household can be exactly compensated. There
exists some p∗(t) and T ∗(t) supporting c∗(t) with aggregate income I(t). Let pCPI

h (p∗(t))
be the price index associated with the homothetic aggregator ũh (ch). Since preferences
are locally nonsatiated and agents exhaust their incomes, we have total spending is equal
to total income:

∑
h

ũh(c∗)pCPI
h (p∗) = I(t)

Exact compensation implies that

ũh (c
∗
h) = ũh′ (c

∗
h′) .

Substituting this into the previous equation implies that

ũh (c
∗
h) =

I(t)
∑h pCPI

h (p∗(t))
.

Consider the choices of the compensated agent given the same price vector p∗ and total
income I(t). Since p∗ is a competitive equilibrium with transfers, pCPI

h (p∗) > 0, which
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implies that the compensated representative agent chooses:

ũh

(
c

comp
h

)
= ũh′

(
c

comp
h′

)
.

Since the compensated representative agent exhausts all income, we have

ũh

(
c

comp
h

)
=

I(t)

∑h pcomp
h (p∗(t))

.

Hence,
A(t) = U(c∗(t)) = U(ccomp(t)).

This proves the first equality. Since the compensated representative agent has a homo-
geneous of degree 1 utility function, the remaining equalities follow as a consequence of
standard results for representative agent economies.

Proof of Lemma 1. Consider the decentralized equilibrium at the status-quo. We wish to
show that the same prices and allocations are a compensated equilibrium. This simply
requires showing that given decentralized price vector p(0) and aggregate income I(0),
the compensated representative agent makes the same consumption choices. This fol-
lows from the fact that (i) c(0) is affordable to the compensated representative agent; (ii)
any other consumption choice that dominates c(0) is unaffordable to the compensated
representative agent.

(ii) follows from the fact that if U(c′) > U(c(0)), then it must be that c′h ≻h ch(0) for
every h. The latter fact implies that p(0) · c′

h > p(0) · ch(0) for every h (otherwise c(0)
would not be a decentralized equilibrium). Summing this across all h guarantees that c′

is unaffordable because p(0) · ∑h c
′
h > p(0) · ∑h ch = I(0).

Proof of Proposition 1. By Theorem 2, we know that

A(t) = Ycomp(t).

If preferences are identical, homothetic, and all households face the same relative prices,
then the distribution of spending across households has no effect on equilibrium relative
prices. Hence, pcomp(t) = p(t). Given these prices, and homotheticity of preferences, we
also know that

∑
h
ccomp(t) = ∑

h
c(t).
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From this, it follows that
A(t) = Ycomp(t) = Y(t).

Since there is a positive representative agent with homothetic preferences, it follows from
standard results that

Y(t) = ARA(t).

Finally, letting u(c) be the homogeneous of degree one representation of the utility func-
tion of every agent (since all agents have the same preferences), we have that

AKH(t) = ∑h eh(p(t), uh(t))
∑h eh(p(t), uh(0))

=
∑h uh(t)
∑h uh(0)

=
∑h u(ch(t))
∑h u(ch(0))

,

=
∑h u(c(t)χh(t))
∑h u(c(0)χh(0))

,

where χh(t) is household h’s share of aggregate expenditures at t,

=
∑h χh(t)u(c(t))
∑h χh(0)u(c(0))

,

=
u(c(t))
u(c(0))

= ARA(t).

Proof of Proposition 2. This is restatement of Hulten (1978).

Proof of Proposition 3. This follows from combining Theorem 2 with Proposition 2.

Proof of Proposition 4. This follows from combining Theorem 2 with Proposition 3 from
Baqaee and Farhi (2019b).

Proof of Proposition 5. Kaldor-Hicks efficiency can be defined using the aggregate consumption-
equivalent variation where the set we shift is the aggregate budget set. Specifically,

AKH(t) = max
{

ϕ ∈ R : there is c ∈ ϕ−1B(p(t), I(t)) and uh(ch) ≥ uh(c
0
h) for every h

}
,

where B(p(t), I(t)) = {c : p(t) · ∑h ch ≤ I(t)} and I(t) = ∑h Ih(t). In the absence of
distortions (µ = 1), p(t) and I(t) are prices and income in the competitive equilibrium.

We first show that C(z(t)) is contained in the aggregate budget set B(p(t), I(t)). Sup-
pose that there is a feasible consumption allocation c′ ∈ C(z(t)) that violates the ag-
gregate budget constraint at equilibrium prices. That is, p(t) · c′ > I(t), where I(t) =

50



w(t) · L + Π(t), and Π(t) denotes aggregate profits which are equal to zero in equilib-
rium. Hence, Π(t) < p(t) · c′ −w(t) · L. Aggregate profits Π′ under any feasible alloca-
tion c′ are given by Π′ = p(t) · c′ −w(t) · L. By the inequality above, Π(t) < Π′. This is a
contradiction, since aggregate profits are maximized in a competitive equilibrium given
prices (see Proposition 5.E.1 in Mas-Colell et al. (1995)).

If C ′ ⊆ C then A(c0, C ′) ≤ A(c0, C). To see this, let c∗ and ϕ∗ be the solution to
A(c0, C ′). That is, c∗ ∈ C ′ and uh(c

∗
h) ≥ uh(c

0
h) for every h. Since c∗ ∈ ϕ∗C, the statement

above follows. Hence, because the Pareto frontier C(z(t)) is contained in the aggregate
budget set B(p(t), I(t)), it follows that A(t) ≤ AKH(t). Finally, pure redistributions leave
the Pareto frontier unchanged, so C(t) is unchanged with t and A(t) = 1.

Proof of Proposition 6. This is a consequence of Theorem 2 and Petrin and Levinsohn (2012).

Proof of Proposition 7. Index wedges by t, and denote the status-quo with wedges by c0(t).
Let t = 0 denote the point where µ(0) = 1. The set C(0) is then the Pareto efficient frontier.
From Proposition 6, we have that

log A(c0(t), C(0)) = −
∫ t

0
∑

i
λ

comp
i (s)

(
1 − 1

µi(s)

)
d log ycomp

i
ds

ds.

Differentiate the expression above to get

d
dt

[log A] = −∑
i

λ
comp
i (t)

(
1 − 1

µi(t)

)
d log ycomp

i
dt

.

Differentiate a second time to get

d2

dt2 [log A] = −∑
i

dλ
comp
i (t)

(
1 − 1

µi(t)

)
d log ycomp

i
dt

−∑
i

λ
comp
i (t)

1
µi(t)

d log µi

dt
d log ycomp

i
dt

− ∑
i

λ
comp
i (t)

(
1 − 1

µi(t)

)
d2 log ycomp

i
dt2 .

Evaluate these derivatives at t = 0 and write the second-order Taylor approximation:

log A ≈ 0 − 1
2 ∑

i
λ

comp
i (0)

1
µi(0)

d log µi

dt
dt

d log ycomp
i (0)
dt

dt.
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To a second-order, this can also be written as

∆ log A ≈ 0− 1
2 ∑

i
λ

comp
i (t)

d log µi

dt
dt

d log ycomp
i (t)

dt
dt ≈ −1

2 ∑
i

λ
comp
i (t)∆ log µi∆ log ycomp

i ,

since the differences are higher-order.

Let τ ∗(t) and T ∗(t) to be the maximizers of (13). Using τ ∗(t), we provide a slightly
more general definition of the compensated equilibrium.

Definition 6 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, wedges, and
linear taxes τ ∗(t) but where there is a representative agent with preferences as in Defini-
tion 3. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

The following result, which is a consequence of Theorem 1, generalizes Theorem 2 to
allow for limited redistribution.

Theorem 3 (Aggregate Efficiency Using Compensated Equilibrium). If outcomes are inte-
rior, then aggregate efficiency can be calculated using the compensated equilibrium:

A(t) = Ycomp(t) = AKH,comp(t) = ARA,comp(t).

In words, aggregate efficiency, A(t), can be computed by solving for changes in real
output, or welfare of the Hicksian representative agent, in the compensated equilibrium.36

Once again, this means that tools and results used to calculate welfare in homothetic rep-
resentative agent economies can be converted into results about aggregate efficiency with
heterogeneous and non-homothetic preferences.

The main challenge lies in knowing the necessary taxes τ∗(t) which the proposition
takes as given. However, given these taxes, then the change in every price and quantity in
the compensated equilibrium can be calculated as a function of t by applying the results
in Baqaee and Farhi (2020).

Proof of Theorem 3. Consider

A(z,µ) = max {U (c(z,µ, τ ,T )) : (τ ,T ) ∈ T (z,µ)} .

36The fact that Kaldor-Hicks efficiency, AKH,comp(t), in the compensated equilibrium with distortionary
taxes τ∗ coincides with the rest follows trivially from the fact that the compensated equilibrium has a single
agent with homothetic preferences. It is important to note that AKH,comp(t) is not the same as AKH(t).
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Index technology and wedges by t and let τ∗(t) and T∗(t) be optimizers. Let c∗(t) =

c(z(t),µ(t), τ ∗(t),T ∗(t)) be a consumption allocation that maximizes the problem above.
Interior outcomes implies that

ũh(c
∗
h(t)) = ũh′(c

∗
h′(t)).

Let p∗(t) and I∗(t) be the equilibrium price vector and income corresponding to maxi-
mizer of problem above. Let ẽh(p) be the unit cost function associated with ũ. Hence, we
have that spending by household h, denoted by χ∗

h(t) is

χ∗
h(t) = ẽh(t)ũh(t).

Consider the compensated representative agent’s problem in a decentralized equilibrium,
facing the same relative prices,

ccomp(t) ∈ argmaxc {U(c) : p∗(t) · c ≤ I(t)} ,

where by definition U(c) = minh∈H{ũh(ch)}. Hence, by two-stage budgeting, we can
rewrite the representative agent’s problem as

χ
comp
h ∈ argmaxχh

{
min
h∈H

{(χh/ẽh(p
∗(t)))} : ∑

h
χh ≤ I(t)

}
.

This is a convex optimization problem and the first-order conditions are necessary and
sufficient for the global optimum. That is, χ

comp
h (t) is pinned down by that

χ
comp
h (t)/ẽh(p

∗(t)) = χ
comp
h′ (t)/ẽh′(p

∗(t)),

and

∑
h

χ
comp
h (t) = I(t).

This is to say that
ũh(c

comp
h (t)) = ũh′(c

comp
h (t)) ∀h, h′

and, from budget balance, we know that

∑
h

ẽh(p
∗(t))ũh(c

comp
h (t)) = I(t).

But these conditions are also satisfied by c∗(t). Hence, c∗(t) constitutes a compensated
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equilibrium.

Proof of Proposition 8. Combine Theorem 3 with Proposition 4 from Baqaee and Rubbo
(2023).

Proposition 10 (Equivalence of Kaldor-Hicks and Aggregate Efficiency). If there is one
primary factor, so that relative prices are independent of demand, then A(t) = AKH(t).

Proof. With one primary factor of production and constant-returns technologies, it is well-
known that relative prices do not depend on final demand. Hence, the vector of equilib-
rium prices and aggregate income in the decentralized (multi-agent) economy p(t) and
I(t) are also compensated equilibrium prices and aggregate income. Theorem 2 implies
that A(t) = AKH,comp(t). Since relative prices and aggregate income are the same, it fol-
lows that AKH,comp(t) = AKH(t).

Appendix D Additional Examples and Derivations

Homothetized non-homothetic CES. Consider a household with non-homothetic CES
preferences, as in Comin et al. (2021),

uh(ch) =

(
∑

i
(chi)

η−1
η (uh(ch))

ξi

) η
η−1

.

where η is the compensated elasticity of substitution and ξi controls income effects. Then
ũh(ch) is homothetic CES given by

ũh(ch) =
1
u0

h

(
∑

i
(chi)

η−1
η

(
u0

h

)ξi

) η
η−1

,

where u0
h ≡ uh(c

0
h) is treated as a constant. If ξi are the same for every i, then ũh and uh

are both cardinalizations of the same preference rankings.

Derivations in Example 2 The homothetized utility function associated to

uh(ch) = cα
hgc1−α

hs ,
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is

ũh(ch) =
cα

hgc1−α
hs(

c0
hg

)α (
c0

hs

)1−α
.

The compensated representative agent assuming interior outcomes sets

A = ũh = ũh′

for all h′ subject to

∑
h

chg = zg, chs = zhs.

Hence, {chg}H
h=1 solves

A =
cα

hgz1−α
hs(

c0
hg

)α (
c0

hs

)1−α
=

cα
h′gz1−α

h′s(
c0

h′g

)α (
c0

h′s

)1−α
, for all h′

subject to ∑h chg = zg. The solution is

A =

 zg

∑h z
α−1

α
hs c0

hg

(
z0

hs

) 1−α
α


α

.

In status-quo, c0
hg = χ0

hz0
g,37 so

A =

 zg/z0
g

∑h χ0
h

(
zhs/z0

hs

) α−1
α

α

.

A second-order approximation yields the expression in the text.

Derivations in Example 3 The homothetized utility function associated to

uh(ch) =

[
(αh)

1
θh (uh(ch))

ζh c
θh−1

θh
hd + (1 − αh)

1
θh c

θh−1
θh

h f

] θh
θh−1

,

37To see that χ0
h is also region h’s share in total income, note that (under the Cobb-Douglas specification

of this example) the first-order condition for chg and chs is p0
hsz0

hs =
1−α

α χ0
hz0

g, where we normalize the price

of the tradable good to 1. Therefore, χ0
hz0

g + p0
hsz0

hs =
1
α χ0

hz0
g and

χ0
hz0

g+p0
hsz0

hs
∑h′ χ0

h′ z
0
g+p0

h′sz0
h′s

=
χ0

h
∑ χ0

h′
= χ0

h.
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is

ũh(ch) =
1
u0

h

[
(αh)

1
θh (u0

h)
ζh c

θh−1
θh

hd + (1 − αh)
1

θh c
θh−1

θh
h f

] θh
θh−1

,

In autarky, ch f = 0, so

ũh ([chd, 0]) =
1
u0

h
chd

[
(αh)

1
θh (u0

h)
ζh

] θh
θh−1

The domestic expenditure share of household h in the status quo is

s0
hd ≡

p0
dc0

hd
p0

dc0
hd + p0

f c0
f d

=
p0

dc0
hd

p0
hc0

h
=

(αh)
1

θh (u0
h)

ζh
(
c0

hd
) θh−1

θh

(u0
h)

θh−1
θh

Solving for
[
(αh)

1
θh (u0

h)
ζh

]
and substituting into the homothetized utility function yields

ũh ([chd, 0]) =
chd

c0
hd

(
s0

hd

) θh
θh−1

=
p0

d
p0

hc0
h

p0
hc0

h
p0

dc0
hd

chd

(
s0

hd

) θh
θh−1

=
p0

d
p0

hc0
h

chd

(
s0

hd

) 1
θh−1

=
p0

dy0
d

p0
hc0

h

chd

y0
d

(
s0

hd

) 1
θh−1

=
1

χ0
h

chd

y0
d

(
s0

hd

) 1
θh−1 ,

where χ0
h = p0

hc0
h/p0

dy0
d is the share of h′s expenditures in total income (assuming balanced

trade), and y0
d is the aggregate quantity of the home produced good in the status-quo

(which is consumed and exported).
The compensated representative agent assuming interior outcomes sets

ũh = ũh′

for all h′ subject to

∑ chd = yd = y0
d,
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where yd is the total output of domestic good in autarky (which is equal to that in status-
quo). Combining, we obtain

∆ log A = log ũh = log
1

∑ χ0
h

(
s0

hd

)− 1
θh−1

,

which is the expression in the text.

Example with skill-biased technical change and costly redistribution. We now con-
sider a simple example with skill-biased technical change that raises the real wage of
high-skill workers but lowers the real-wage for low-skill workers. We compare how the
response of aggregate efficiency changes depending on the redistributive tools available.
Suppose that output (and consumption) are a CES aggregate of the output of manufac-
turing and services:

c = y =

[
γ

1
ρ

1 y
ρ−1

ρ
m + (1 − γ1)

1
ρ y

ρ−1
ρ

s

] ρ
ρ−1

,

where each sector’s output is a CES aggregate of low- and high-skill labor

yo =

[
α

1
σ
o (zo1lo1)

σ−1
σ + (1 − αo)

1
σ (zo2lo2)

σ−1
σ

] σ
σ−1

,

where lo1 is low- and lo2 is high-skill labor. The resource constraints are that

∑
h

ch = c, ∑ lo1 = l1, ∑ lo2 = l2.

We assume that workers are much more substitutable than sectors: ρ ≪ σ. We also
assume that manufacturing is more intensive in low-skill labor use than services.

Consider an increase in automation or the productivity of capital, which we capture
via an increase in the productivity of high-skill labor in manufacturing: ∆ log zm2 > 0.
This is a reduced-form representation for the idea that high-skill labor in manufacturing
is equipped by capital, and hence an increase in the quality of capital makes high-skill
more productive.38

Again, we contrast two scenarios: (1) lump-sum taxation is available, (2) lump-sum
transfers must be non-negative and the government can only levy a linear tax on machine
use in manufacturing, which we capture as a linear tax, τ, on manufacturing’s use of high-

38For example, high-skill labor and capital are combined in a Leontief nest together called equipped labor,
and then equipped labor is substitutable with low-skill labor. We can then think of altering the productivity
of equipped labor by varying the productivity of capital.
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skill labor.
Figure 7 illustrates the results in a numerical example. Panel 7a shows that skill-biased

technical change raises the real wage for high-skill workers and lowers them for low-skill
workers in the decentralized equilibrium. The fact that low-skill wages decline means
that they need to be compensated via transfers financed by either lump-sum or distor-
tionary taxes. Panel 7b shows the increase in efficiency depending on which taxes are
used. As expected, the increase in aggregate efficiency is lower if only distortionary red-
stributive tools are available. Panel 7b also shows that the second-order approximation is
very accurate. In the absence of any redistributive tools whatsoever, aggregate efficiency
in this example actually declines because the low-skill workers are worst off and there is
no feasible way to compensate them.
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Figure 7: A numerical example of skill-biased technical change. The parameter values are
ρ = 1, σ = 8, γ = 0.5, αm1 = 0.9, and αs1 = 0.5. We normalize steady-state quantities so
that the CES share parameters are equal to expenditure shares in the status-quo.

Appendix E Explicit Characterization of Compensated Equi-

librium

Theorem 2 and Theorem 3 (in Appendix C) show that calculating changes in aggregate
efficiency can be boiled down to solving for the compensated equilibrium. This section
provides some formulas for calculating variables in the compensated equilibrium. To do
so, we rely on the differential hat algebra approach in Baqaee and Farhi (2020), which
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characterizes equilibria of representative agent economies with wedges using differential
equations. Alternatively, one could also use exact-hat algebra methods, as in Dekle et al.
(2008).

For concreteness, assume that all production and utility functions are nested-CES.
(Non-CES economies can be analyzed in a similar way following the non-CES extensions
in Baqaee and Farhi (2019b)). To make the notation more compact, represent the economy
in such a way that each producer, i, is associated with a single elasticity of substitution θi

(by treating each sub-nest as a separate producer).

E.1 Input-Output Notation

Stack the expenditure shares of the representative household, all producers, and all fac-
tors into the (H + N + F)× (H + N + F) input-output matrix Ω. The first H rows cor-
respond to the households consumption baskets. The next N rows correspond to the
expenditure of each producer on every other producer and factor as a share of its sales
(where the sales price is always inclusive of the wedge and tax). The last F rows corre-
spond to the expenditure shares of the primary factors (which are all zeros, since primary
factors do not require any inputs). With some abuse of notation, the heterogeneous agent
input-output matrix can be written as

Ω =



0 · · · 0 b11 · · · b1N 0 · · · 0
... · · · ... · · · · · ·
0 · · · 0 bH1 · · · bHN 0 · · · 0

0 · · · 0 Ω11 · · · Ω1N Ω1N+1 · · · Ω1N+F
... · · · ... . . .

0 · · · 0 ΩN1 ΩNN ΩNN+1 · · · ΩNN+F

0 · · · 0 0 · · · 0 0 · · · 0
... · · · ...

... · · · ...
... · · · ...

0 · · · 0 0 · · · 0 0 · · · 0



.

Note that our convention is that rows (not columns) record costs relative to revenues
inclusive of wedges and taxes. If wedges and taxes are greater than one, then the rows of
this matrix will generally sum to a number less than one. The Leontief inverse matrix is
the (H + N + F)× (H + N + F) matrix defined as

Ψ ≡ (I − Ω)−1 = I + Ω + Ω2 + . . . ,
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where I is the identity matrix. The Leontief inverse matrix Ψ ≥ I records the direct and
indirect exposures through the supply chains in the production network.

Denote the distribution of expenditures by each household by χ, which is an (H + N + F)×
1 vector. The first H elements are equal to each household’s share of aggregate consump-
tion expenditures, and the remaining N + F elements are all zeros. As a matter of ac-
counting identities, the vector of Domar weights satisfies:

λ′ = χ′Ψ.

In this equation λ is a (H + N + F)× 1 vector. The first H elements are equal the expen-
ditures of each household relative to aggregate consumption expenditures, χ′, the next
N + F elements are equal to the sales of each good and factor relative to aggregate con-
sumption expenditures.

Let µ and τ denote the diagonal matrices whose iith element is equal to µi and τi

respectively. Recall that µ are exogenous wedges, whereas τ are linear taxes that can be
used for redistribution. Define the cost-based Leontief inverse to be

Ψ̃ = (I − (τµ)Ω)−1.

Note that the cost-based Leontief inverse coincides with Ψ in the absence of wedges.
Intuitively, Ψ̃ is a version of the Leontief inverse that calculates exposures of i to j in terms
of cost shares rather than revenue shares (revenues exceed costs if wedges and taxes are
greater than one).

For any non-negative vector a, define

Cova(b, c) = Ea[bc]− Ea[b]Ea[c] = ∑
i

ai

∑i′ ai′
bici − ∑

i

ai

∑i′ ai′
bi ∑

i

ai

∑i′ ai′
ci,

where Ea[·] denotes averages of vectors weighted by the elements of a. For any matrix X,
denote its ith row and column by X(i,:) and X(:,i).

E.2 Differential Hat-Algebra

The next proposition characterizes compensated variables in terms of initial expenditure
shares, wedges, and shocks.

Proposition 11 (Differential Equations for Compensated Equlibrium). Let aggregate spend-
ing be the numeraire. Then, assuming interior outcomes, the compensated equilibrium satisfies the
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following system of differential equations. For each i ∈ H + N + F, the compensated price satisfies

d log pcomp
i = ∑

j
Ψ̃comp

ij [d log µjτ
∗
j − d log zj] + ∑

f∈F
Ψ̃comp

i f d log λ
comp
f . (15)

Compensated Domar weights for goods and factors satisfy

dλ
comp
l = ∑

j
λ

comp
j (1− θj)µ

−1
j CovΩcomp

(j,:)

(
d log pcomp, Ψcomp

(:,l)

)
+Covχcomp

(
d log χcomp, Ψcomp

(:,l)

)
− ∑

j
λj
(
Ψjl − 1[j = l]

)
d log µjτ

∗
j . (16)

Changes in compensated expenditure shares for household h satisfy

d log χ
comp
h = d log pcomp

h , (17)

where d log pcomp
h is the price of the consumption bundle for household h. The compensated input-

output matrix satisfies

dΩcomp
ij = (1 − θi)

(
d log pcomp

j − EΩcomp
(i,:)

[d log pcomp]

)
− d log µi. (18)

Finally, d log ycomp
i is given by d log λ

comp
i − d log pcomp

i . The initial conditions are given by
Lemma 1 that all prices and expenditures are equal to the ones in the competitive equilibrium for
t = 0.

Equation (15), (16), and (18) are standard and identical to expressions in Baqaee and
Farhi (2020). They are loglinearizations of marginal cost-functions, market clearing con-
ditions, and demand curves respectively. The key equation, which distinguishes the com-
pensated equilibrium from the decentralized equilibrium is (17). Whereas in the decen-
tralized equilibrium changes in household expenditures are determined by changes in
the income of each household, in the compensated equilibrium, they are determined by
the choices of the compensated agent (who tries to equate homothetized utilities across
agents). The term d log pcomp

h , which is pinned down by (15), is the change in the com-
pensated price index of household h.

The taxes τ ∗(t) are given by the maximizers of the problem in (13). If only lump-
sum transfers are used for redistribution, as in Sections 4 and 5, then τ ∗(t) = 0, and
Proposition 11 fully characterizes the compensated equilibrium in terms of exogenous
parameters: z(t) and µ(T). If lump-sum transfers are unavailable, then solving for τ∗(t)
requires specifying more details about the set of available tax instruments. Specifically,
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we would need to add the log-linearized first-order conditions for the tax instruments
from (13) as additional equations in Proposition 11 to pin down how τ∗ evolves.

There is one case where this optimization problem can be avoided. If there are only
H − 1 taxes available, and outcomes are interior, then (17) can pin down τ∗(t). For exam-
ple, suppose that there are H − 1 taxes, and the share of revenues from the ith tax sent to
household h are given by αih:

Th(t) = ∑
i

αih

(
1 − 1

τ∗
i (t)

)
λi(t).

Log-differentiating household h’s budget constraint gives:

d log χ
comp
h = ∑

f

ωh f λ
comp
f

χ
comp
h

d log λ
comp
f +

dTh

χ
comp
h

,

differentiating Th(t) above, and substituting it into the log-linearized budget constraint
gives H − 1 additional equations which, assuming regularity conditions, will pin down
d log τ ∗.

Generally, solving the system of linear equations in Proposition 11 requires inverting a
system of equations. When there is a single primary factor of production and we evaluate
these derivatives at a perfectly competitive point, then the change in efficiency can be
solved out easily up to a second-order.

Proposition 12 (Aggregate Efficiency with One Factor). Consider a competitive economy with
a single primary factor of production. The change in aggregate efficiency in response to a vector of
productivity shocks, ∆ log z and changes in wedges ∆ logµ is

∆ log A ≈∑
i

λi∆ log zi +
1
2 ∑

i∈N+H
λi(θi − 1)VarΩ(i,:)

(
∑
k

Ψ(:,k) log zk

)

− 1
2 ∑

i∈N+H
λiθiVarΩ(i,:)

(
∑
k

Ψ(:,k)∆ log(µkτ∗
k )

)
.

to a second-order approximation in ∆ log z and ∆ log µ.

There are three summands. The first one is just Hulten’s theorem. The second sum-
mand is a nonlinear adjustment due to changes in Domar weights. The second summand
is also equal to: 1/2 ∑k

[
∑j ∂λ

comp
k /∂ log zj∆ log zj

]
∆ log zk. If the compensated Domar

weight for k rises due to productivity shocks, then the shock to k is more important. This
happens if exposure to k is heterogeneous, captured by the variance term, and if elastici-
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ties of substitution, θi, are far from unity. The final summand are the Harbeger triangles
caused by the taxes and wedges. The triangles are larger the higher are elasticities of sub-
stitution, θi, and the more heterogeneous are exposures to the taxes and wedges, captured
by the variance terms.

63


	Introduction
	Abstract Definition and Characterization
	Decentralized Equilibrium with Lump-Sum Transfers
	Environment and Equilibrium
	Different Aggregate Measures in General Equilibrium
	Characterizing A(t) Using lemma:UMax
	A Miraculous Consensus

	Competitive Economies with Lump-Sum Transfers
	Comparative Statics for Changes in Technologies
	Some Paradoxes of Real Output and Kaldor-Hicks
	Analytical Examples

	Distorted Economies with Lump-Sum Transfers
	Comparative Statics for Changes in Technologies and Wedges
	Misallocation and the Distance to Pareto Frontier
	Analytical Examples

	Aggregate Efficiency with Limits to Redistribution
	General Solution with Linear Taxes
	Analytical Example: Losses from Autarky
	Quantitative Example: the China Shock

	Conclusion
	Expenditure Function of Compensated Agent
	Definition of Positive & Normative Representative Agent
	Proofs
	Additional Examples and Derivations
	Explicit Characterization of Compensated Equilibrium
	Input-Output Notation
	Differential Hat-Algebra


