Efficiency Costs of Incomplete Markets

David Baqaee Ariel Burstein

UCLA

Quantifying Misallocation due to Incomplete Markets

- Financial market incompleteness is inescapable feature of data and modern theory:
 - In domestic economies, failure of permanent-income hypothesis.
 - In international, violations of perfect risk-sharing (Backus-Smith).
- Inability to share resources across states and time is a form of misallocation.
- ► How much of society's resources are wasted due to this type of misallocation?

If financial markets were completed and everyone was compensated, how much resources would be left over?

- Provide answers for closed & open economies with incomplete financial markets.
 - Exact formulas & approximations using sufficient statistics w/o fully-specified model.
- Quantify misallocation from incomplete domestic (US) & international markets.

Selection of Related Papers

Measuring Aggregate Efficiency with Heterogeneous Agents:

Coeff. of resource utilization, (Debreu, 1951); Baqaee and Burstein, (2025).

Efficiency Losses from Incomplete Markets without SWF:

Benabou (2002); Floden (2001); Farhi & Werning (2012); Aguiar, Amador, Arellano (2024); Fitzgerald (2025).

Aggregate Welfare in Incomplete Market Models:

Imrohoroglu (1989); Heathcote, Storesletten, Violante (2008); Conesa, Kitao, & Krueger (2009); Davila, Hong, Krusell, & R. Rull (2012); Karahan and Ozcan (2013); Aguiar, Itskhoki & Mukhin (2024); Constantinides (2025).

Decompositions of Social Welfare Functions:

Bhandari, Evans, Golosov & Sargent (2021); Davila & Schaab (2023, 2024).

Agenda

Definition & Characterization of Misallocation

Closed Economy with Idiosyncratic Risk Theory Empirical Application

Open Economy with Country-Level Risk Theory Empirical Application

Conclusion

Agenda

Definition & Characterization of Misallocation

Closed Economy with Idiosyncratic Risk Theory Empirical Application

Open Economy with Country-Level Risk Theory Empirical Application

Conclusion

Aggregate Efficiency

- ▶ Consider collection of H agents with preferences \succeq_h over consumption vectors $\mathbf{c}_h \in \mathbb{R}^N$.
- ▶ Let $\mathbf{c} = [\mathbf{c}_1, \cdots, \mathbf{c}_H] \in \mathbb{R}^{H \times N}$ denote a consumption allocation matrix.
- Let c^0 be status-quo, and C be set of feasible consumption allocations. We typically set C to be dynamic Pareto-efficient allocations under complete markets.
- \blacktriangleright By how much can we contract $\mathcal C$ while keeping everyone indifferent to status-quo?

Aggregate Efficiency

- ▶ Consider collection of H agents with preferences \succeq_h over consumption vectors $\mathbf{c}_h \in \mathbb{R}^N$.
- ▶ Let $\mathbf{c} = [\mathbf{c}_1, \dots, \mathbf{c}_H] \in \mathbb{R}^{H \times N}$ denote a consumption allocation matrix.
- Let c^0 be status-quo, and C be set of feasible consumption allocations. We typically set C to be dynamic Pareto-efficient allocations under complete markets.
- ightharpoonup By how much can we contract C while keeping everyone indifferent to status-quo?

Misallocation

$$A(\boldsymbol{c}^0,\mathcal{C}) \equiv \max \left\{ \phi \in \mathbb{R} : \text{there is } \boldsymbol{c} \in \phi^{-1}\mathcal{C} \text{ and } u_h(\boldsymbol{c}_h) \geq u_h(\boldsymbol{c}_h^0) \text{ for every } h \right\}.$$

- e.g. if A = 1.1, it is possible to compensate everyone and have $\approx 10\%$ of every good left over.
- no stance on how surplus should be distributed.

Aggregate Efficiency

- ▶ Consider collection of H agents with preferences \succeq_h over consumption vectors $\mathbf{c}_h \in \mathbb{R}^N$.
- ▶ Let $\mathbf{c} = [\mathbf{c}_1, \dots, \mathbf{c}_H] \in \mathbb{R}^{H \times N}$ denote a consumption allocation matrix.
- Let c^0 be status-quo, and C be set of feasible consumption allocations. We typically set C to be dynamic Pareto-efficient allocations under complete markets.
- \blacktriangleright By how much can we contract $\mathcal C$ while keeping everyone indifferent to status-quo?

Misallocation

$$A(\mathbf{c}^0, \mathcal{C}) \equiv \max \{ \phi \in \mathbb{R} : \text{there is } \mathbf{c} \in \phi^{-1} \mathcal{C} \text{ and } u_h(\mathbf{c}_h) \geq u_h(\mathbf{c}_h^0) \text{ for every } h \}.$$

- ightharpoonup e.g. if A=1.1, it is possible to compensate everyone and have $\approx 10\%$ of every good left over.
- ▶ answer depends on ordinal preference relation; monotone transformations of utility irrelevant.

How to Solve for A

- Use main theorem in Baqaee and Burstein (2025) to attack problem.
- Let $\tilde{u}_h(\mathbf{c}_h)$ be *h*'s individual consumption equivalent:

$$u_h(\mathbf{c}_h/\tilde{u}_h)=u_h(\mathbf{c}_h^0).$$

 $\tilde{u}_h(\mathbf{c}_h)$ is H.O.D. 1 function of \mathbf{c}_h .

Proposition

Misallocation is

$$A(\boldsymbol{c}^0, \mathcal{C}) = \max_{\boldsymbol{c} \in \mathcal{C}} \left[\min \left\{ \tilde{u}_1(\boldsymbol{c}_1), \cdots, \tilde{u}_H(\boldsymbol{c}_H) \right\} \right].$$

Problem of calculating misallocation converted into one of maximizing utility for a fictional agent.

Call maximizer of problem c^{comp} . Not interesting per se, useful device to calculate A.

Agenda

Definition & Characterization of Misallocation

Closed Economy with Idiosyncratic Risk Theory Empirical Application

Open Economy with Country-Level Risk
Theory
Empirical Application

Conclusion

Baseline Closed Economy

▶ Specialize preferences to CRRA over state-contingent consumption streams:

$$u(\mathbf{c}_h) = \frac{1}{1 - 1/\eta} \sum_{s} \pi(s) \sum_{t=0}^{\infty} \beta^t c_{ht}(s)^{1 - \frac{1}{\eta}}.$$

- Production in each *t* and *s* is statically efficient. No capital or leisure for now.
- Production efficient: removing distortions won't alter aggregate output, so take $y_t(s)$ as given: General neoclassical production technologies with any pattern of technological shocks.
- Consumption possibility set is dynamic feasible set:

$$\mathcal{C} = \left\{ oldsymbol{c} : \sum_h c_{ht}(s) \leq y_t(s), ext{ for every } t ext{ and } s
ight\}.$$

- ightharpoonup Let status-quo c^0 be equilibrium under incomplete markets.
- ▶ log *A* is output leftover, in every date & state, if markets completed & everyone compensated.

Exact Characterization

► Given these preferences, we have

$$\tilde{u}_h(\boldsymbol{c}_h) = rac{\mathsf{CE}(\boldsymbol{c}_h)}{\mathsf{CE}(\boldsymbol{c}_h^0)},$$

where $CE(\mathbf{c}_h)$ is certainty-equivalent that solves $u(\mathbf{c}_h) = u(\mathbf{1} CE)$.

► Using theorem, misallocation is

$$egin{aligned} egin{aligned} A &= rac{\mathsf{CE}(\sum_h oldsymbol{c}_h^0)}{\sum_h \mathsf{CE}(oldsymbol{c}_h^0)}, \end{aligned}$$

Similar to Benabou (2002), but as a result rather than a definition.

"Misallocation" according to utilitarian social welfare function is

$$egin{aligned} \mathcal{A}^U &= rac{\mathsf{CE}(\sum_h oldsymbol{c}_h^0)}{\left(\sum_h \left(\mathsf{CE}(oldsymbol{c}_h^0)
ight)^{rac{\eta-1}{\eta}}
ight)^{rac{\eta}{\eta-1}}}. \end{aligned}$$

Permanent deterministic inequality implies $A^U < 1$ but is Pareto efficient (A = 1).

Exact Characterization: Sketch of derivation

Allocations on Pareto frontier satisfy $c_{ht}(s) = \alpha_h y_t(s)$ with $\sum_h \alpha_h = 1$, so

$$A = \max_{\boldsymbol{c} \in \mathbf{C}} \min_{h} \left\{ \tilde{u}_h(\boldsymbol{c}_h) \right\} = \max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^H \\ \alpha_h \geq 0, \; \sum_h \alpha_h = 1}} \min_{h} \left\{ \alpha_h \, \tilde{u}_h(\boldsymbol{y}) \right\}.$$

Solve this utility-maximizing problem and use

$$\widetilde{u}_h(\boldsymbol{c}_h) = rac{\mathsf{CE}(\boldsymbol{c}_h)}{\mathsf{CE}(\boldsymbol{c}_h^0)}.$$

yields

$$lpha_h = rac{\mathsf{CE}(oldsymbol{c}_h^0)}{\sum_{h'} \mathsf{CE}(oldsymbol{c}_{h'}^0)}.$$

Substituting this into $A = \alpha_h \tilde{u}_h(y)$ and using $\sum_h c_h^0 = y$, yields the expression.

- ▶ Use second-order approximation to build sufficient statistics.
- **Proof.** Replicate status-quo allocation using Arrow-Debreu with consumption taxes, $\mu_{ht}(s)$.
- Let $\omega_{ht}(s)$ be h's share of consumption in date t and state s, taxes must be

$$\log \mu_{ht}(s) = -rac{1}{n} \left[\log \omega_{ht}(s) - \log \omega_{h0}
ight].$$

- Use second-order approximation to build sufficient statistics.
- ▶ Replicate status-quo allocation using Arrow-Debreu with consumption taxes, $\mu_{ht}(s)$.
- Let $\omega_{ht}(s)$ be h's share of consumption in date t and state s, taxes must be

$$\log \mu_{ht}(s) = -rac{1}{\eta} \left[\log \omega_{ht}(s) - \log \omega_{h0}
ight].$$

► Harberger's Triangles (Harberger, 1971; Baqaee & Farhi, 2020) Suppose we eliminate all wedges, to a second-order:

$$\log A pprox - \mathbb{E}_0 \sum_{t,h} rac{r}{(1+r)^{t+1}} \omega_h imes \underbrace{\left(rac{1}{2} \log \mu_{ht}(s) \left(\log c_{ht}^{comp}(s) - \log c_{ht}^0(s)
ight)
ight)}_{ ext{area of deadweight loss triangle}},$$

where $\log c_h^{comp}$ is *h*'s compensated consumption.

▶ Special case with one period, $c_h(s) = \bar{c}_h + \varepsilon_h(s)$. Plug terms into Harberger triangle formula:

$$\Delta \log A pprox rac{1}{2} rac{1}{n} \mathbb{E}_{\omega} \left[\mathit{Var} \left[\log c_h(s) | h
ight] \right].$$

Misallocation depends on average volatility of household consumption (not inequality).

> Special case with one period, $c_h(s) = \bar{c}_h + \varepsilon_h(s)$. Plug terms into Harberger triangle formula:

$$\Delta \log A \approx \frac{1}{2} \frac{1}{n} \mathbb{E}_{\omega} \left[Var \left[\log c_h(s) | h \right] \right].$$

Misallocation depends on average volatility of household consumption (not inequality).

- Now consider multi-period problem, like Bewley (1972).
- ▶ Plug in terms into Harberger triangle formula, misallocation is

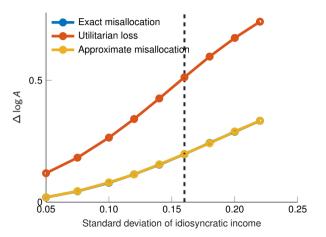
$$\Delta \log A pprox \mathbb{E}_0 \sum_{t,h} \underbrace{\frac{r}{(1+r)^{t+1}} \omega_h}_{ ext{NPV of expenditures}} \frac{1}{2} \underbrace{\frac{1}{\eta} \left(\log \omega_{ht}(s) - \log \omega_{h0} \right)}_{ ext{log } \mu} \underbrace{\left(\log \omega_{ht}(s) - \log \bar{\omega}_h \right)}_{\Delta \log c^{comp}},$$

where $\bar{\omega}_h$ is the NPV of *h*'s consumption share.

- Advantage of formula: no fully-specified model, just a moment of expenditures in status-quo.
- Can apply directly to consumption panel w/out info on portfolio problems or income process.

Example: Off-the-Shelf Calibration of Bewley

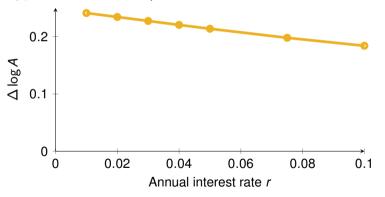
 \triangleright EIS = 0.5, borrowing limit 5× quarterly income, bonds are 140% of annual GDP.



- Baseline: roughly 20% of output left after everyone is kept indifferent.
- Gains more than double under utilitarian SWF, which combines efficiency and "equity."

Sufficient Statistics Applied to PSID, 1999-2020

- Apply triangles formula directly to consumption panel data in the US.
- \triangleright Estimate $\log \bar{\omega}_h$ by regressing future consumption on household characteristics in 1999.
- ▶ Only remaining parameters are EIS, $\eta = 0.5$, and risk-free rate, r.



- Gains from eliminating idiosyncratic volatility: \approx **20**% of output in every period and state.

Dropping covariates when constructing household NPV of expenditures

Eliminated variable	Estimated misallocation
None (Baseline)	0.214
Spouse labor income	0.223
Household head labor income	0.223
Business assets (household & spouse)	0.231
Household head college degree	0.239
Household head race and ethnicity	0.244
Household head age	0.249
Renter status	0.252
Household size	0.258
State of residence	0.269
Wealth	0.266

As we drop covariates, we incorrectly attribute cross-sectional differences to inefficiency.

Extension with Labor-Leisure Choice

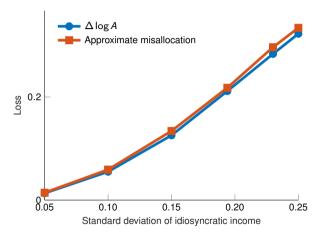
- ► Household preferences: $u(\mathbf{c}_h, \mathbf{l}_h) = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t v(c_{ht}(s), \mathbf{l}_{ht}(s))$.
- Resource constraint: $\sum_h c_{ht}(s) = \sum_h z_{ht}(s) (1 I_{ht}(s))$.
- lacktriangle Distortionary labor tax finances debt, so ${\mathcal C}$ is no longer Pareto-efficient frontier.
- ▶ A measures how much of every good, including leisure, is wasted due to incomplete markets.

Extension with Labor-Leisure Choice

- ► Household preferences: $u(\mathbf{c}_h, \mathbf{l}_h) = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t v(c_{ht}(s), \mathbf{l}_{ht}(s))$.
- ► Resource constraint: $\sum_h c_{ht}(s) = \sum_h z_{ht}(s) (1 I_{ht}(s))$.
- lacktriangle Distortionary labor tax finances debt, so $\mathcal C$ is no longer Pareto-efficient frontier.
- ► A measures how much of every good, including leisure, is wasted due to incomplete markets.
- ▶ Benabou (2002) ranks allocations by sum of CE for some fixed leisure.
- Our measure is different because agents optimally choose leisure.
- \triangleright Our measure assigns A=1 to every point on the Pareto efficient frontier.
 - Benabou measure assigns different values to points on Pareto frontier, including strictly preferring more inequality.

Example: Bewley with Labor-Leisure Choice

Frisch = 0.5, calibrate shocks to target baseline cross-sectional variance of consumption.



- Misallocation very similar to the baseline model.
- Original approximation formula works well (even though ignores leisure).

Extension with Capital Accumulation

Precautionary motive distorts aggregate capital stock.

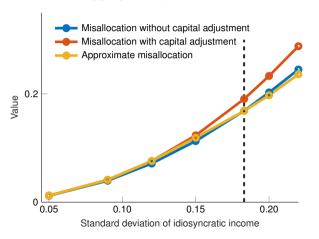
$$A = rac{\mathsf{CE}(\{c_t^*(s)\}_{t,s})}{\sum_h \mathsf{CE}(oldsymbol{c}_h^0)},$$

where $c_t^*(s)$ is agg. consumption in a neoclassical growth model with initial capital stock k_0 .

That is, $c_t^*(s)$ satisfies Euler equation & resource constraints (with usual transversality).

Example: Aiyagari with Capital Accumulation

Precautionary motive distorts aggregate capital stock.



- Misallocation slightly larger allowing the capital stock to adjust.
- Original approximation formula works well holding capital stock fixed.

Agenda

Definition & Characterization of Misallocation

Closed Economy with Idiosyncratic Risk Theory Empirical Application

Open Economy with Country-Level Risk Theory Empirical Application

Conclusion

- Similar question can be asked in open economy, where consumption baskets differ.
- Failure of perfect international risk sharing is well-documented and stark.
- What are welfare implications? How much losses because countries don't insure each other?
- Two challenges for literature:
 - How to quantify "how much are we losing?"
 - How to identify productivity shocks/financial frictions.

- Similar question can be asked in open economy, where consumption baskets differ.
- Failure of perfect international risk sharing is well-documented and stark.
- What are welfare implications? How much losses because countries don't insure each other?
- Two challenges for literature:
 - ► How to quantify "how much are we losing?" We use A.
 - ► How to identify productivity shocks/financial frictions. We use sufficient statistics.

Now allow preferences to differ across *h* due to e.g. non-tradeables:

$$u_h(\boldsymbol{c}_h) = \frac{1}{1-1/\eta} \sum_{s} \pi(s) \sum_{t=0}^{\infty} \beta^t c_{ht}(s)^{1-\frac{1}{\eta}}.$$

Goods produced from intermediates and factors (nests Armington model):

$$y_{it}(s) = z_{it}(s) \left(\sum_{i \in N} \alpha_{ij} \left(y_{ijt}(s) \right)^{\frac{\theta_i - 1}{\theta_i}} + \sum_{f \in F} \alpha_{if} \left(I_{ift}(s) \right)^{\frac{\theta_i - 1}{\theta_i}} \right)^{\frac{\omega_i}{\theta_i - 1}}.$$

Resource constraints for final goods, intermediates, and factors:

$$c_{ht}(s) = y_{ht}(s), \quad \sum_{i \in N} y_{jit}(s) = y_{it}(s), \quad \sum_{i \in N} l_{jft}(s) = z_{ft}(s).$$

Misallocation

- $ightharpoonup \mathcal{C}$ dynamic feasible consumption set given process \emph{z} for productivities & factor endowments.
- ightharpoonup status-quo consumption allocation with incomplete markets (i.e. data generating process).
- Measure misallocation as before:
 - A is the maximum contraction in C such that it is possible to keep everyone indifferent.
- Equivalently, A is fraction of factor endowments that is wasted.
- ▶ We hold **z** fixed when we measure A abstract from changes in innovation, capital accumulation & labor supply when markets completed.
- That is, we focus only on waste from improperly sharing fixed resources.

▶ Decentralize status-quo by consumption-wedges in Arrow-Debreu:

$$\log \mu_{ht}(s) = -rac{1}{\eta} \left[\log rac{\omega_{ht}(s)/\omega_{h0}}{\omega_{ar{h}t}(s)/\omega_{ar{h}0}}
ight] + rac{1-\eta}{\eta} \left[\log rac{
ho_{ht}(s)/
ho_{h0}}{
ho_{ar{h}t}(s)/
ho_{ar{h}0}}
ight]$$

▶ Wedges capture deviations from Backus-Smith (1993). If status-quo dynamically efficient,

$$\log rac{c_{ht}(s)/c_{h0}}{c_{ar{h}t}(s)/c_{ar{h}0}} = -\eta \log rac{
ho_{ht}(s)/
ho_{h0}}{
ho_{ar{h}t}(s)/
ho_{ar{h}0}},$$

consumption growth perfectly negatively correlated with real exchange rate.

▶ Decentralize status-quo by consumption-wedges in Arrow-Debreu:

$$\log \mu_{ht}(s) = -\frac{1}{\eta} \left[\log \frac{\omega_{ht}(s)/\omega_{h0}}{\omega_{\bar{h}t}(s)/\omega_{\bar{h}0}} \right] + \frac{1-\eta}{\eta} \left[\log \frac{\rho_{ht}(s)/\rho_{h0}}{\rho_{\bar{h}t}(s)/\rho_{\bar{h}0}} \right]$$

▶ Wedges capture deviations from Backus-Smith (1993). If status-quo dynamically efficient,

$$\log rac{c_{ht}(s)/c_{h0}}{c_{ar{h}t}(s)/c_{ar{h}0}} = -\eta \log rac{p_{ht}(s)/p_{h0}}{p_{ar{h}t}(s)/p_{ar{h}0}},$$

consumption growth perfectly negatively correlated with real exchange rate.

Misallocation is approximately

$$\log A \approx \frac{1}{2}\mathbb{E}_0\left[\sum_{t=0}^{\infty} \frac{r}{(1+r)^{t+1}} \sum_{h \in H} \omega_h \log \mu_{ht}(s) \sum_{h' \in H} \mathcal{M}_{hh'}[\log \mu_{h't}(s) - \log \bar{\mu}_h]\right],$$

where $\mathcal{M}_{hh'}$ depends only on the static input-output matrix and elasticities of substitution.

Approximate Characterization: Simple Example

- Symmetric two countries, each country produces one good using labor.
- Misallocation is approximately

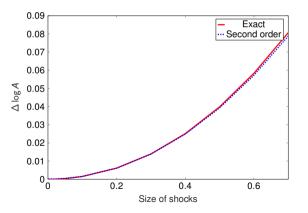
$$\log A \approx \frac{1}{2} \left[\frac{\alpha(1-\alpha)}{\left(\frac{1}{\eta} - \frac{1}{\theta}\right) 4\alpha(1-\alpha) + \frac{1}{\theta}} \right] \sum_{t=0}^{\infty} \frac{r}{(1+r)^{t+1}} \mathbb{E}_0 \left[\log \mu_{1t}(s) \left(\log \mu_{1t}(s) - \log \bar{\mu}_1 \right) \right],$$

where α is import share and θ Armington elasticity.

- Misalloc. high if $\alpha \approx 0.5$ or θ high more missed opportunities to share risk.
- ightharpoonup Misalloc. high if EIS η is low consumption fluctuations more costly.
- $ightharpoonup \mathcal{M}$ in previous slide generalizes this example.

Approximate Characterization: Numerical Example

- Armington trade with 15 countries, rep agent within each country, $\theta = 3$, and $\eta = 0.5$.
- ► Randomize country sizes, I-O matrices, productivity shocks, and Backus-Smith wedges.

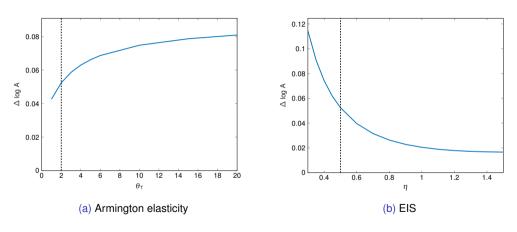


Second-order does not need information on productivity process.

- ► To apply triangle formula, abstract from within-country heterogeneity.
- ▶ Need static IO table, elastic. of subs., and Backus-Smith wedges.
- ▶ Use world input-output database with 32 countries and 54 industries from 1970 2019.
- ▶ Use Global Macro Database (Muller et al., 2023) for Backus-Smith wedges.
- ightharpoonup Cobb-Douglass aggregator across industries, Armington elasticity = 3, EIS = 0.5.
- No information needed on portfolio problems, productivity shocks, ownership of assets.
- ▶ No stance on whether consumption fluctuations are due productivity changes or wedges.

- ► Benchmark gains: roughly **5**%.
- Driven by differential growth rates between countries (e.g. China vs. Germany).
- ▶ Dropping China and India, gains much smaller $\sim 1\%$.
- Despite stark violations of risk-sharing, small gains from international business-cycle insurance.

Vary trade elasticity and EIS, holding data fixed.



- Estimated losses increasing in Armington elasticity: more missed opportunities.
- Estimated losses decreasing in EIS: fluctuations more costly.

Agenda

Definition & Characterization of Misallocation

Closed Economy with Idiosyncratic Risk

Empirical Application

Open Economy with Country-Level Risk

Theory

Empirical Application

Conclusion

Conclusion

- Quantify misallocation due to inability to share resources across states and time.
- ▶ Within countries, these losses are substantial, on the order of 20%.
- Across countries, more limited, especially among similar countries.
- Future research: misallocation rel. to constrained efficient with imperfect instruments.
- Lots of open questions to explore with this type of measures.