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Abstract

This paper studies aggregate efficiency in general equilibrium models where agents
with heterogeneous preferences make discrete choices between locations and occupa-
tions. We show how the conventional tools of welfare economics, like cost-benefit
analysis, can be extended to these settings. Following Debreu (1951), we measure the
change in aggregate efficiency by: “the maximum reduction in total factor productivity
such that it is possible to make every household at least indifferent to their status-quo alloca-
tion.” Aggregate efficiency rises if factors can be saved while keeping every house-
hold at least indifferent. We characterize our measure of efficiency in competitive
economies. We show that, to a first-order approximation, its elasticity with respect
to technology shocks is given by sales shares (regardless of preferences and technolo-
gies). We provide nonlinear characterizations in terms of compensated supply and
demand systems. Our analysis can be viewed as a general equilibrium counterpart
to the sum of compensating variations measure analyzed by Small and Rosen (1981).
We also contrast our measure with the commonly used “expected utility” approach,
which depends on untestable assumptions about how individual utility functions are

cardinalized.
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1 Introduction

There has been an explosion of work on general-equilibrium economies in which agents
make discrete choices over where they live and work. These models allow for hetero-
geneity in preferences and skills, so that different agents make different choices and face
different outcomes in response to changes in the environment. Aggregating these dis-
parate outcomes into meaningful statistics is a central task of economics. These statistics
are important because they summarize overall changes in welfare and guide policy.

This paper shows how the conventional tools of welfare economics and general equi-
librium theory, including cost-benefit analysis, can be extended to these environments.
Before discussing our approach, we discuss shortcomings of currently popular aggregate
measures in discrete choice settings. The problems we discuss with these measures moti-

vate our search for an alternative.

i. Chain-weighted real output: This is how real output and consumption are mea-
sured in the national accounts. In economies with a single final good, this is simply
the change in the quantity of that good. However, as is well-known, these mea-
sures can be an inappropriate gauge for welfare because they ignore amenity value
(Roback, 1982). For example, if an agent moves from a high to low real wage lo-
cation/job, then real output and consumption fall, even though that agent may be
better off once we take into account her location preferences. Indeed, it is simple to
construct Pareto-efficient examples where every agent is better off after a shock, but

real output declines.!

ii. Utilitarian welfare or “expected” utility: A fundamental issue with this measure is
that it is not invariant to monotone transformations of individual utility functions.
This implies that replacing a utility function with a monotone transformation that
generates the exact same individual choice behavior can nonetheless alter the social
welfare ranking. For instance, in the spatial literature, a standard utility specifica-
tion is ce;,, where c is consumption and €y, is 1’s idiosyncratic taste.? This is obser-
vationally equivalent to a model where tastes are normalized by each individual’s
average taste parameter: E(e|h) (i.e., cej,/IE(ey|h)). While both specifications predict

identical individual choices, average utility across agents implies a different ranking

'Examples of papers with discrete choice and heterogeneous preferences that analyze real output mea-
sures include, Hsieh et al. (2019) who measure misallocation of talent, Lamadon et al. (2022) who study the
efficiency cost of imperfect competition (they also study effects on average utility, discussed below), Bagga
et al. (2025) who study the effects of amenity shocks on labor reallocation and output, among many others.

2Some examples that use average utility to measure aggregate welfare in the spatial literature include
Redding (2016), Caliendo et al. (2019), and Allen and Arkolakis (2022).

2



of social allocations. Crucially, there is no canonical basis for selection here: normal-
izing average taste intensity to unity is just as plausible as leaving it unscaled. Since
the data cannot distinguish between these scaling methods, the resulting aggregate

welfare measure relies on untestable assumptions regarding cardinalization.?

iii. Sum of compensating variations: This measure is also called Kaldor-Hicks effi-
ciency or cost-benefit efficiency, and has been analyzed by Small and Rosen (1981)
for settings with discrete choice. It measures the amount of money left-over after
winners compensate the losers holding new equilibrium prices and wages constant.
The pioneers in the discrete choice literature, like McFadden (1981) and Anderson
et al. (1992), emphasize that consumer welfare in discrete choice models should be
measured using compensating or equivalent variations of the individual agents, as
in standard consumer theory.* While this measure does not have the issues of the
previous two, it can nevertheless be unreliable in general equilibrium. In particular,
the implied compensations may be infeasible. For example, we show that Kaldor-
Hicks efficiency can rise in response to pure transfers that move the economy along
the Pareto-efficient frontier. In this sense, the sum of compensating variations is not

a pure measure of efficiency.

Our approach, which side-steps these issues, is a reformulation of the third approach.
We follow in the footsteps of Harberger (1971) and Small and Rosen (1981) in using
willingness-to-pay as a basis for constructing a measure of aggregate efficiency. How-
ever, instead of adding up willingness-to-pay at constant prices, we use a definition in
terms of quantities. This definition of efficiency, proposed by Debreu (1951) and, more
recently extended by Baqaee and Burstein (2025) asks: “what is the maximum reduction in
total factor productivity such that it is possible to make every household at least indifferent to their
status-quo allocation?” If we can save x% of factor endowments and keep every household
at least indifferent, then we say that efficiency has increased by x%.

Kaldor-Hicks measures efficiency gains by the amount of aggregate income that could
be taken away — holding prices and wages fixed — while leaving everyone as well-off as

under the status-quo. Our definition is similar, but it measures efficiency gains in terms of

3See Section 6.1 for a discussion and worked out example. Although sometimes called “expected utility,”
measures of average utility are not formally expected utility functions. This is because expected utility
functions are representations of ordinal preference relations on the space of lotteries — not an expectation
of utility values across households with different preferences.

“While this approach is common in the industrial organization literature, it is less common in general
equilibrium spatial and occupational choice models. One exception is Kim and Vogel (2020), who study a
model where workers choose among a discrete number of sectors including non-employment. They show
that the elasticity of the sum of compensating variations with respect to wages is given by income share of
each sector.



primary factors rather than dollars: it asks how much of those factors could be removed
— holding technologies fixed — while leaving everyone indifferent to the status-quo.

This measure has several useful features. First, the answer has interpretable units
expressed in terms of total factor productivity (or equivalently, in units of every good,
since scaling total factor productivity also scales the consumption possibility set). Second,
and unlike real output, it respects the Pareto principle — efficiency rises only if every
agent can be made better off. Third, and unlike “expected” utility, the question is about
observables with a falsifiable answer. That is, it is invariant to monotone transformations
of utility and does not introduce other free parameters like Pareto weights. Hence, models
that are observationally equivalent in terms of physical allocations, will assign the same
number to the change in aggregate efficiency under our definition. Fourth, unlike the
sum of compensating variations, the question is stated and the answer is measured in
terms of exogenous variables, rather than endogenous prices and wages. This implies,
for example, that aggregate efficiency is unaffected by pure redistributions that move
the economy along the Pareto frontier. Fifth, it does not take a stance on distributional
considerations or embed normative judgements about interpersonal utility comparisons.
Finally, it is relatively easy to communicate its meaning to non-experts and policy-makers.

We study this question in perfectly competitive but otherwise fairly flexible general
equilibrium economies. Focusing on a perfectly competitive, and hence Pareto-efficient,
benchmark helps clarify the differences between our approach and standard practice
in the literature. We abstract from distortions and externalities discussed by, for exam-
ple, Fajgelbaum and Gaubert (2020), but extending the current analysis beyond Pareto-
efficient models is an important area for future work.

The structure of the paper is as follows. We set up the preferences and technologies
and define perfectly competitive equilibrium in Section 2. Households have preferences
over consumption and the region and/or industry in which they live and work. Produc-
tion uses labor and intermediate inputs, and can accommodate input-output networks
and trade. In Section 3, we define our notion of aggregate efficiency and show how it
can be characterized using compensated (or Hicksian) supply and demand functions. In
this context, compensated supply functions map relative wages and prices to population
shares across locations or occupations, holding each household on a fixed indifference
curve. We also show how to compute compensated supply functions using simulation
methods.

In Section 4, we provide some analytical (as opposed to simulation-based) character-
izations of our measure. First, we show that our measure of aggregate efficiency, to a

tirst-order approximation, obeys Hulten’s theorem. That is, the elasticity of aggregate ef-



ficiency to a productivity shock to producer i is equal to the sales of i divided by total
income. In particular, one does not need to know anything about the underlying pref-
erences or technologies. Moreover, one does not need to take into account changes in
behavior in response to the shock (to a first order). Intuitively, any changes in real wages
experienced by agents that switch their choice in response to a shock are exactly offset by
changes in the amenity value of their choices. We show that real output, in contrast, does
not obey Hulten (1978) and hence differs from aggregate efficiency even to a first-order
(despite the fact that the model is efficient).

Whereas our measure of efficiency differs from real output, it does coincide, to a first-
order approximation, with measures of multifactor productivity growth (or the Solow
residual) computed using a quality-adjusted labor input (as in, e.g., chapter 3 of the
OECD’s manual on measuring productivity). That is, our analysis provides a theoreti-
cal justification for those statistics in efficient economies with heterogeneous tastes and
discrete choice.

In this section, we also point out a noteworthy special case: agents only care about
a common consumption good (no amenities) and vary in their skills, rather than tastes.
Economies satisfying these assumptions are common in the literature on skill-based oc-
cupational choice driven by comparative advantage. In this special case, our measure of
aggregate efficiency coincides with multi-factor productivity growth, not only to a first-
order but globally. In fact, in this case, aggregate efficiency also coincides with real output.

In Section 5, we push our analytical characterization beyond the first-order and in-
vestigate nonlinearities. We provide a second-order approximation of changes in aggre-
gate efficiency. We show that the first-order approximation understates positive shocks
and overstates negative shocks if compensated sales shares rise for producers with pos-
itive shocks. The reverse is true if compensated sales shares fall in response to positive
shocks. We express the elasticities of compensated sales shares in terms observables in the
initial equilibrium: income and expenditure shares, and price elasticities of uncompen-
sated (market-level) supply and demand systems. We also provide a tractable special case
where we can exactly characterize aggregate efficiency, beyond second-order, and with-
out the use of simulation methods. This is the case when all agents consume a common
freely-traded consumption good and the uncompensated supply system has symmetric
cross-partials (e.g. population choices obey a logit supply system). We also provide some
analytical examples.

In Section 6, we compare our approach to the sum of compensating variations (Kaldor-
Hicks efficiency) studied by, for example, Small and Rosen (1981). We emphasize that
when we refer to Kaldor-Hicks we do not refer to a partial equilibrium exercise where



some equilibrium variables or choices are kept constant at their initial values. That is, we
always measure Kaldor-Hicks efficiency using prices and wages in general equilibrium.”
We show that our measure does not generally coincide with Kaldor-Hicks efficiency by
providing an example where Kaldor-Hicks efficiency detects increases in efficiency in
response to pure transfers as the allocation moves along the Pareto-frontier.

In Section 6, we also compare our approach to the utilitarian/“expected” utility ap-
proach. We show that the utilitarian approach typically does not coincide with our ap-
proach, even to a first-order. As discussed above, we also show that different arbitrary but
equally plausible monotone transformations of the individual utility functions result in
different utilitarian social welfare functions with different implications for optimal policy
even in Pareto-efficient models. We do discuss one special cardinalization of individual
functions, where under some additional strong assumptions, a utilitarian calculation co-
incides with our measure of aggregate efficiency.®

For a detailed analysis of aggregate welfare using social welfare functions in spatial
models, see Donald et al. (2023). The most important difference between our papers is that
we ask a different question. As explained above, we do not use social welfare functions,
or the utilitarian (“expected”) utility function. Instead, we define aggregate efficiency in
terms of resource savings after compensating transfers.

This difference is important because utilitarian welfare or “expected” utility conflates
efficiency considerations with distributional concerns (see the discussion by Fajgelbaum
and Gaubert, 2025). In particular, policymakers looking to maximize average utility have

incentives to intervene in Pareto-efficient allocations for purely distributive motives.” In

SContrast this with traditional partial equilibrium cost-benefit analysis, which ignores the fact that equi-
librium variables can change. (See the discussion by Redding, 2025).

®This relates to the a well-known property of discrete choice models where consumers choose among
a discrete set of options given fixed prices and incomes. In that literature, it is known that if the indirect
utility function is quasi-linear in income, then exists a closed-form formula, known as the “social surplus
function,” that can be used to calculate the sum of compensating variations (see Small and Rosen, 1981).
This social surplus function is the expected utility of the agents, under a particular cardinalizing assump-
tion about taste shifters. In the absence of quasi-linearity, calculating the sum of compensating variations
typically requires resorting to simulation methods. See Hortagsu and Joo (2023), and the references therein,
for a recent textbook discussion. As discussed by Hortagsu and Joo (2023), recent studies in the industrial
organization literature ignore individual compensating variations and directly use the social surplus func-
tion, the expected utility of agents under a cardinalizing assumption, as the starting point of their analysis,
even if the quasi-linear justification for this approach does not hold. Dubé et al. (2025) analyze the welfare
properties of this expected social surplus function for a broad class of demand systems.

"Mongey and Waugh (2024) provide an alternative interpretation where average utility is the expected
utility of individuals who are ex-ante identical (before their taste shocks are known) and lack access to
insurance markets for their idiosyncratic tastes. However, if such an ex-ante state does not exist, then the
results of this type of analysis also rest on an untestable cardinalizing assumption. That is, if households
cannot make choices in the ex-ante stage that reveal their risk preferences about how they rank one set of
taste parameters against another, then choice data is only determined up to a monotone transformation and



contrast to such a measure, our measure of efficiency is maximized in Pareto-efficient
allocations. That is, if a policy yields a higher value of aggregate efficiency, then it must
be that this policy can make all households better off.

2 Environment and Equilibrium

In this section we define the environment and equilibrium. We consider a competitive
equilibrium without congestion and agglomeration externalities. There is a set of com-
modities, N, and a set of primary factors R. As in Arrow-Debreu, commodities may be
indexed by region (e.g. haircuts in LA and New York can be treated as different com-
modities).® Similarly, the set of primary factors may also be indexed by occupation and
region (e.g. Barbers in LA and waiters in New York are different primary factors). For
concreteness, we refer to the discrete choice [, € R as the location choice of h with the

understanding that it may index location in space as well as occupation and industry.’”

Households” problem. There is a set H of agents, with a unit mass. Each agent h &
H consumes a scalar-valued (homothetic) bundle ¢ (e.g. of goods and services) and a
location I;, € R (e.g. being a barber in Los Angeles or a waiter in New York, etc.) Since
goods may be indexed by location, the bundle ¢, may depend on the choice of location
(e.g. barbers in Los Angeles consume a different bundle of goods than waiters in New
York). Agent h has preferences =~ over the bundle of consumption and location choice
represented by a utility function uy,(cy, I)-

Household h's preference are ordinally additively separable between location choices

and consumption. This means that the utility function can be written as

up(cn In) = fu(g(cn) + €m,),

where ¢ is a strictly increasing function, €, is a taste parameter for household h’s pref-

erences for location [j,, and fj, is any strictly increasing (potentially household-specific)

function.10

the ex-ante expected utiltiy function can not be recovered from the data. See also the discussion of this issue
by Davis and Gregory (2021).

8Similarly, if there are trade costs, then traded goods are indexed by both origin and destination. For
example, oranges produced in California and consumed in New York are different to oranges produced in
California and consumed in Illinois.

9In principle, we could also capture land by allowing some / to be landowner that allocate the flow of
services provided by their land to different industries in a given region but cannot move them in space.

10Since utility is only pinned down up to monotone transformations, the function f;, has no observable



The household maximizes utility, choosing consumption ¢;, and location ;. The house-
hold’s budget constraint is that consumption expenditures are less than or equal to in-

come plus transfers:

Y peepd[ly =1] <) apw [l = 1]+ Ty,
reR reR
where p; is the price of the consumption bundle in region r, ay, is agent h’s efficiency units
of labor given choice r, w; is the wage per efficiency unit in that location, and T}, is a lump-
sum transfer. We also anticipate that firms earn zero profits in equilibrium. Recall again
that the choice of location encompasses both spatial location and choice of occupation.
Denote the efficiency units of labor in location r by

L = / aL [l = r] dh.

We call the function L (p, w, T') — mapping vectors of prices, wages, and lump-sum trans-
fers into the share of households in each location — the aggregate labor supply function.
Note each & chooses the location r that yields the highest ¢((ay,w, + T),)/ pr) + €py-

Let x denote the vector of final consumption shares relative to GDP, so

B wyL, + f Thl[lh = T’]dh
Zr/ w,,/Lr/ )

7

We call the function x (p, w, T')) — mapping vectors of prices, wages, and lump-sum trans-
fers into share of total spending by households in each location — the final demand func-
tion. We assume that, in the initial decentralized equilibrium, there are no lump-sum

transfers, T;, = 0, in which case yx; is pinned down by L, and wages.

Producers’ problem. The set of commodities is N. This includes consumption bundles
in different locations, as well as other goods used as intermediate inputs. Each goodi € N
is produced by perfectly competitive firms that maximize profits

piyi — Y piXij— ) WrLi,
JEN reR

implications and can vary at the level of each / in arbitrary ways. However, the shape of g(cj,) has testable
implications, since it controls the way income and substitution effects interact with each other. In particular,
¢(+) affects how households switch choices in response to lump-sum transfers. For example, if g(+) is an
affine function, then households do not switch their choices if we add a constant amount to their consump-
tion in every location. By contrast, if g(-) is log, then households do not switch their choices if we multiply
their consumption by a constant in every location. See Appendix A for more information.



subject to a constant-returns technology

yi = ziF; ({xij}jen/ {ZLir }rer) (1)

where z; is a Hicks-neutral productivity shifter for producer i, F; is a constant returns pro-
duction technology, x;; are intermediate inputs from j € N, L;, are factor services from r.
The scalar Z is an aggregate factor-augmenting productivity (or total factor productivity)
shifter that uniformly scales the production possibility set. We normalize Z = 1 in the

initial equilibrium.

Resource Constraints. The resource constraint for good i € N is that consumption and
intermediate input usage is less than production. Without loss of generality, we split
goods into pure consumption goods and pure intermediates. That is, if i € R, theniisa
consumption good and xj; = 0. On the other hand, if i ¢ R, then i is an intermediate good
and is not directly consumed by any household. Hence the resource constraint for good i
is
/Chl[lh = i]dh + iji <y (2)
]
We say that there is a common consumption good when the price of the consumption good
in every location is the same (e.g. the consumption aggregator in each location is the same
as every other location).
The resource constraint for factor r requires that total factor demand from producers

is less than total factor supply from households:

Y Ly <L 3)

icN

Finally, lump-sum transfers add up to zero:

/n%:a (4)

Definition 1 (Equilibrium with Discrete Choice). An equilibrium is a collection of con-
sumptions, cj, location choices, I;;, outputs, y;, intermediate input choices, {xij, L; }, prices,
pi and wages, w,, such that each agent chooses consumption and location to maximize
utility subject to their budget constraint, producers maximize profits subject to technol-
ogy taking prices as given, transfers add up to zero, and all resource constraints are satis-
tied.



Solving for Equilbrium. To solve for the equilibrium, we introduce some useful ac-
counting variables. Let A be the vector of Domar (1961) weights. The ith component is
the sales of i divided by total income:

__ PiYi
l Y. wrLy

Let ) be the N x N input-output matrix, whose ijth element is:

_ PiXij

QO = )
piYi

1]
Since consumption bundles are treated like any other commodity in the set N, we use (),;
to denote the budget share of the consumption bundle of location » on commodity i (e.g.
the budget share of consumption in New York spent on oranges from Florida). With some
abuse of notation, when i € N is a good and r € R is a location, we define ();, to be i’s

expenditures on labor of type r relative to its sales:

o Wy Liy

Q; .
r plyl

(e.g. the share of sales of Florida oranges spent on agriculture labor in Florida).
Using this notation, we can now describe the equilibrium conditions. Perfect compe-

tition and cost-minimization by producer i implies that p; is equal to its marginal cost:
-1 -1
pi = Zi mci(p,Z w), (5)

which depends on input prices, factor wages, and productivity shifters z; and Z.
Goods market clearing for good i requires that total sales of good i equal total spending

on good i by households and other producers:

A=Y xeQui + Y A (6)
reR JEN

Factor market clearing for labor in location r requires that total income earned by workers

in location r equals total spending by producers:

w,L
A= = Y AQ. (7)
In an equilibrium without lump-sum transfers, the share of spending in each location

10



is equal to the share of income earned in that region:

Xr = Ar. 8)

Hence, given the supply function L,(w, p,T'), one can solve for equilibrium prices and
quantities using (5), (6), (7), and (8).
The example below provides a concrete illustration of the structure of the model using

Cobb-Douglas and logit functional forms.

Example 1 (Illustration of Equilibrium). Every good is produced using a Cobb-Douglas

production technology, so (5) implies that the price of each good can be written as

pi=z '] P]Qij [ T(w,/2)%r,

jEN reR

where ();; and ();, are expenditure shares of i on j and r respectively (Cobb-Douglas im-
plies that these expenditure shares are constant). Goods market clearing, (6), implies that

A=Y xr ¥,
T

where ¥ = (I — Q) ! is the Leontief inverse (which, again, is constant due to the Cobb-
Douglas assumption). Finally, factor market clearing, (7), implies that

wy Ly
Ar = S wa L Yoy xe¥eiQi =Y XY
P T jeEN'ER r'€R

where the final equality uses the identity that Y = ¥ — I. This equation states that
the income earned by factor 7, as a share of total income, must equal the dollar-weighted
average factor content of final consumption.

Suppose that all consumers consume the same consumption good, so that the factor

content ¥/, is the same for every ’. The previous equation simplifies to

wrLy

A= — 1"
Zr” wr//L,//

= ‘POV/ (9)
where 0 is the index for the common consumption good and the right-hand side is a
constant, depending only on the Cobb-Douglas share parameters.

Suppose skills are homogeneous, a,, = 1, and household preferences take the form

up(cp, Iy) = fu(en + € 1[l, = r]) where €y, are drawn from type I extreme value distri-

11



bution and fj, is any strictly increasing function. We get the standard McFadden (1973)
result that the labor supply function is a logit function:

L (w,p, T) = exp(6w, /po + Br)

_ , 10
¥ exp 0w}/ po + BL) 1o

where py is the price of the final consumption good and 0 and B, are parameters of the dis-
tribution of €j,. Note that lump-sum transfers do not affect location choices because g(c,)
is linear and there is only a single consumption good (i.e. transfers T} cancel out when
ranking ¢((ap,w, + Ty,)/ pr) + €5, across locations). Given this functional form, equation

(9) can be rewritten as
wy exp (0w, / po + By)

Y. wy exp (0w, /po + BL) -

where the consumer price index satisfies

po=2"1 Hz]._%j Hw;YO’.
j r

This pins down all equilibrium prices, up to the choice of numeraire, which can then be
used to pin down quantities.

If we strip out intermediates from the model, then we get an even simpler model
where each location represents the output of some occupation, and occupation outputs
are combined using a Cobb-Douglas aggregator with parameters (), to produce the con-
sumption good (i.e. (3;; = 0 fori # 0and j € N)). In this case, equilibrium wages and
prices satisfy:

wy exp (0w, / po + By)

=0
Yo wpexp(0w)/po+B)

and

po=2"1 H(wr/zr)QO’.

3 Defining and Characterizing Aggregate Efficiency

In this section, we define aggregate efficiency. For convenience, index technologies z(f)
by a scalar t. We study changes in aggregate efficiency as t changes, assuming that ¢t = 0
corresponds to an initial equilibrium allocation called the status-quo. For each equilibrium
price and quantity, X, we write X(t).

12



3.1 Definition

Define the set of feasible allocations at ¢, given productivity shifters z to be
C(t,Z2) = {{epn, Iy} nen is feasible given productivities z(t) and factor-augmenting productivity Z} .

We define aggregate efficiency following Debreu (1951).

Definition 2 (Aggregate efficiency). Aggregate efficiency at ¢ relative to t = 0 is
A(t) = max {Z_l Aen ntpey € C(t,Z) and (cy, Iy) =y (cx(0),1,(0)) for every h} . (11)

In words, A(t) is the maximum contraction of total factor productivity, Z, at t, such
that we can feasibly keep every agent at least as well off as in the status-quo. Intuitively,
if A(t) = 1.01, then this means that we can shrink the productivity of factors by roughly
1% (more precisely, 1 — 1.0171) and still keep every household indifferent to the initial
equilibrium. Equivalently, since Z uniformly scales the production possibility set, this
means we can ensure indifference with roughly 1% of every consumption good left over.

3.2 Exact Characterization

Characterizing A(t) by solving (11) is challenging. It requires jointly picking locations
and consumption for all households such that, once we divide factor productivity by A,
every household is indifferent to the status-quo and A is as big as possible. Solving this
problem by brute force is impractical because it involves solving a very large general-
equilibrium combinatorial problem where the choice variable is a discrete vector {I;,}},
and continuous vector {cj, };, both of length H belonging to the feasible set.

To solve this problem, we instead show that the allocation corresponding to A(t)
is supported by a decentralized equilibrium with appropriate lump-sum transfers. We
refer to this as the compensated equilibrium (Bagaee and Burstein, 2025, use similar ter-
minology). In the compensated equilibrium, every household is kept indifferent to the
status-quo through the adjustment of lump-sum transfers and aggregate factor produc-
tivity. The compensated equilibrium provides a much more efficient way to solve for A(t)
nonlinearly, and it allows us to tie the local (marginal) properties of A(t) to observed ex-
penditure shares and price elasticities of supply and demand curves in the decentralized
equilibrium.

13



3.2.1 Expenditure Function and Compensated Choices
To do this, we begin by defining the expenditure function of each consumer.

Definition 3 (Expenditure function). Define e, (p, w, ”2) to be the (net) expenditure func-
tion for agent h given prices p, wages w, and utility level u:

en(p,w, uj) = min{Ty, : up(cy, ) > uj), and Y preyl(ly =7] < Y apw, [l = 1]+ Ty}
T T
0

We call the location choice lzomp (p, w, u;) associated with this optimization problem the

compensated choice of agent h.

In words, e, (p, w, ug) is the minimum lump-sum transfer agent i requires to be made
at least indifferent to some reference utility level !, given prices and wages. The location
choice that the agent makes, given that transfer, is what we call the compensated choice.
This definition parallels the classical definition of expenditure functions and compensated
demand in traditional consumer theory.!!

To characterize the compensated choice of each household, we first define the consumption-

equivalent variation.

Definition 4 (Consumption-equivalent variation). Define ¢, as the solution to

= 0
8(Cnr,) + €, = 8(cy) + €0/
where ¢! is the consumption and [ is the location of & in the status-quo. Hence, Cpi, is the
consumption agent & must have in location Jj, to be indifferent to the status-quo.

Given the consumption-equivalent variation, the following proposition shows how to

compute the compensated choices and the expenditure function at the household level.

Proposition 1 (Compensated Choices and Expenditure Function). The compensated choice

1L (p,w, u)) satisfies

1" (p,w, uf) € arg max Y [anwr — pr] 1[I = 7]
r

The expenditure function, or transfer needed to ensure indifference to u), is

ey (p, w, 1/12) = pllcompfhlzomp — ahrwlzomp.
n

1See also Small and Rosen (1981) for a related analysis. Whereas they consider discrete consumption
choices, given fixed income, here the level of income depends also on the discrete choice (via the wage).

14



In words, [a,,w, — p,Cy,] is the surplus, in dollars, household & receives from being
sent to location 7. The compensated choice maximizes this surplus, and the expenditure
function is equal to the negative of the surplus. This proposition gives a straightforward
way to calculate the compensated choice and the compensating transfer for each agent
given a vector of prices p and wages w.

Given household-level location choices and expenditure functions from Proposition 1,
we can aggregate to get location-level variables. The compensated labor supply function,

the efficiency of units of labor in location r given compensating transfers, is:
L™ (p, w, ud) = / A 1[5 (p, w, ul) = rdh.

Similarly, the compensated spending by households that choose location r is the sum of

their labor income and net transfer payments:
E;°"P (p, w, uo) = w,L;>"F + / en(p,w, ug) 1 [l;omp (p, w, uo) = r|dh,

where l;omp (p, w,uY)) and ey, (p, w, u))) are given by Proposition 1. We can also denote the

compensated share of total spending by households in location r to be

(p,w,u’) = E"™ (p,w, u)

B Zr/ E:,:lornp (p/ w, uo) '

comp

Xr

Hence, Proposition 1 provides a way to evaluate the compensated share function L°™P
and expenditures E“°™P given any arbitrary vector of wages, prices, and utility levels.
3.2.2 Calculating A(t) using Compensated Choices and Spending

The next result uses the compensated regional location choices and expenditures to solve
for A(t).

Theorem 1 (Aggregate Efficiency via Compensated Equilibrium). Aggregate efficiency sat-
isfies

Y w, L (p,w/A,u)
v B (p,w/ A, u)

The vector of prices p equal marginal costs, (5), given wages w and productivities z. The vector of

A(t) , (12)

wages w satisfy market clearing conditions (6) and (7), given compensated location choices L«
and expenditure shares x“°"'F. The wages, prices, location choces, and quantities that satisfy these

conditions are not the same as the ones in the decentralized equilibrium. We call them variables in
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the compensated equilibrium instead.

Solving for A(t) using Theorem 1 is relatively straightforward. To see the logic, con-
sider the following iterative procedure. First, conjecture a vector of wages in the compen-
sated equilibrium, w, and aggregate efficiency A. Use the wages and the productivities,
z(t), to solve for prices by setting prices equal to marginal costs, as in (5). Then ap-
ply Proposition 1 to get compensated choices L°™P and spending E“°™P given prices,
wages, and conjectured aggregate efficiency. Given L®™P and E“™P, use equations (6)
and (7) to update wages and use equation (12) to update aggregate efficiency. In a com-
pensated equilibrium, these new wages and measures of aggregate efficiency coincide

with the initial conjectures.

3.3 Single-Good Example

We illustrate Theorem 1 using a simple example. Suppose there is a single consump-
tion good produced linearly from labor with productivity z,(f) in location r. Assume
households skill is homogeneous: a;, = 1 for every h € H and r € R. The production

technology in each region is

Yr =z¢Ly = 24 / 1[I, = r]dh,

where L, is the share of households in location r. Consumption goods produced in each
region are perfectly substitutable and freely traded. The aggregate resource constraint is

/chdh <Y ze(t)Ly.

The feasible set requires that total consumption equal total production:

C(t) = {{ch,lh} : /chdh < er/[zh - r]dh}.

Applying Theorem 1 is simple in this economy since the real wage in the compensated

equilibrium must be z,. Hence, (12) is

% [z (1L = r]dh

M Tane = v
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where, by Proposition 1, the compensated choices satisfy:

Lo € argmax Y lz/A—cp1]l=7]
€

r

This is a simple numerical problem to solve agent-by-agent. However, to get a more
explicit solution, we can further assume that g¢(c) is linear. In this case, by Definition 4

Chi, = Zlg (0) + €h12 — €nly-

Substituting this into (13) and rearranging yields

t
L[l enlt [f=r] = & [ T = ven b
z ) A
Substituting ¢y, into the expression for [“™P in Proposition 1 we also see that
1o e arg max Y [z:/A+ep]l]l =1] = arg max i (z1/ A1),
r

Hence, the compensated location choice is the same as the uncompensated location choice

given the vector of real wages z/A. Hence, we can rewrite (14) as

E [mrax z,(0) + Ghr] =E [mrax ZE;; + €hr} )

where the expectation averages over all households. Under the common type I extreme

value distribution, we get that
Y exp(6z,(0) + B,) =} exp(0z,(t)/ A(t) + B;). (15)
r r
This is a single nonlinear equation that can be solved to yield A(¢).

Dangerous leap. A serendipitous fact about (15) is that A(#) coincides with computing
utilitarian welfare assuming a particular cardinalization of the ordinal preference rela-
tions. In particular, suppose we use a particular (arbitrary) cardinalization of the utility
function: uy,(cy, 1y) = fu(g(cn) + €m,) = cn + €ny,, and we define W(u) = [ u,dh to be
utilitarian social welfare under this cardinalization. Then, (15) implies that A(t) satisfies:

max W (u,(2(0))) = max W (uy,(2(t)/ A(t))).
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This is the change in productivity a utilitarian planner needs to be indifferent to the status-
quo. This strategy, which works when g(c) is a linear function and there is a single con-
sumption good, breaks down whenever ¢(c) is nonlinear or if consumption goods in

different locations have different prices. See Section 6 for more details.!?

4 Analytical Results for Aggregate Efficiency

In this section, we provide analytical results for aggregate efficiency in terms of elastici-
ties and integrals of compensated quantities. We compare A(t) with real output changes,
since real output is a commonly used metric for aggregate efficiency and it is also instruc-
tive.

For any variable X, we use X(t) and X“™P(f) to refer to its value in the decentralized
equilibrium and in compensated equilibrium (the compensated equilibrium is described

in Theorem 1).

4.1 Sufficient Statistics for Aggregate Efficiency

In this section, we provide hat algebra-style characterizations of aggregate efficiency in
terms of expenditure shares and price elasticities. We begin with the following result
showing that aggregate efficiency is the sum of microeconomic productivity shocks, weighted

by Domar weights in the compensated equilibrium.

Theorem 2 (Efficiency as Area Under Compensated Sales Shares). The change in aggregate
efficiency satisfies
t dlog z;
. comp 4
log A(t) = /0 ;Ai ()85,

where A" (s) is the compensated sales of i divided by GDP given productivities z(s).

Using Theorem 2 requires knowledge of sales shares, A;" ©(s), in the compensated
equilibrium. A useful fact about variables in the compensated equilibrium is that at the
status-quo, compensated variables are equal to decentralized variables. This is because
the decentralized equilibrium is Pareto efficient (the first welfare theorem holds), and
hence, A(0) = 1 and the decentralized equilibrium supports the compensated allocation

with no transfers needed. This allows us to establish the following useful corollary.

12This result is a counterpart to the quasi-linear indirect utility case discussed by Small and Rosen (1981).
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Corollary 1 (First-Order Approximation). 1o a first-order approximation, the change in aggre-
gate efficiency satisfies
log A ~ ZAi(O)A log z;,
i

where A;(0) is the sales of i divided by GDP at the status-quo.

Corollary 11is a generalization of Hulten’s theorem to economies with discrete choice.'?

Using Theorem 2 beyond first-order approximations requires knowledge of sales shares,
comp

A

using standard methods, if we know the compensated location choices, L™ and com-

(t), in the compensated equilibrium away from status-quo ¢ > 0. This is easy to do,

pensated final demand x;" " T. Given these, computing A“™P(s) follows from the results
in Bagaee and Farhi (2019).

For example, assume that all production and consumption functions are CES, with
the ith producer in the input-output matrix () corresponding to a CES aggregator with
elasticity of substitution 6;. Then the following proposition determines sales shares in

both the compensated and uncompensated equilibrium.!*

Proposition 2 (Prices and Expenditures in Equilibrium). The following differential equations

determine the evolution of sales shares in the decentralized equilibrium:

legQi]' = (1 - 91') [dlogp] —dlogpi+dlogzi] p (16)
dlog p; = —dlogz;+)_Qydlogpi+ Y Qjpdlogwy, (17)
j f
dlog Ay = dlogw, +dlog L, — Y _ A [dlogw, +dlogL,] forr € R (18)
1,-/

dlog); = A (2 Axr Qi +Y_xrdQyi + Y d [A,-Qﬁ}) fori € R+N, (19)
r r ]

where all the variables are indexed by t. If we swap L and x for L and x“"", we get the
evolution of sales shares in the compensated equilibrium instead. The boundary conditions are the
same for both the compensated and decentralized equilibria — spending shares are equal to their

values in status-quo, and the initial level of prices and wages is irrelevant.

Proposition 2 can be used to calculate either the decentralized equilibrium, given
dlog x and dlogL, or the compensated equilibrium, given dlog x“°™P and dlog L°™P.

13Corollary 1 is obtained by differentiating the expression in Theorem 2 with respect to  and evaluating
at t = 0, combined with the observation that compensated variables coincide with decentralized variables
in the status-quo.

4This structure is flexible enough to capture any nested-CES production and consumption functions
through relabeling. One can extend to non-nested CES along similar lines to Baqaee and Farhi (2019).
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We now briefly describe the intuition for equations (16)-(19). The expression in (16) is log-
linearized input demand by i for input j, which depends on the elasticity of substitution,
8;, and on how the price of j changes relative to the marginal cost of i. The expression in
(17) Shephard’s lemma, relating the marginal cost of i to the expenditure-share weighted
change in input prices and the productivity shock to i. Equation (18) and (19) are simply
log-linearized versions of market clearing conditions (6) and (7).

A simple corollary of Theorem 2 and Proposition 2 is the following.

Corollary 2 (Cobb-Douglas Economies with Common Consumption). Suppose that all pro-
duction functions are Cobb-Douglas and that there is a common consumption good in every loca-
tion. Then,

log A(t Z Ai(0)Alogz;,

regardless of the shape of the g(c) function and distribution of taste and productivity shifters.

If all production functions are Cobb-Douglas and there is a common consumption
good, then the right-hand side of (16) and (19) are both zero. That is, changes in loca-
tion choices and spending shares do not affect the sales shares. In fact, sales shares are
constant: Acomp( ) = /\mmp(O) Since compensated variables are equal to decentralized
variables in the status-quo, A;"" T (0) = A;(0), the integral in Theorem 2 can be solved

easily.

4.2 Comparison to Real Output

We contrast changes in aggregate efficiency, defined via A(t), with changes in real output,

as measured in the national accounts.

Definition 5 (Real Output). The change in real output is the share-weighted sum of

changes in final consumption quantities:

leg Chi’
lo Y / / Chz( ) i dhds,
i i€EN L Zh pi(s)cpi(s)  ds

where cy; is household /’s consumption of good i.

Using Hulten (1978), we can write real output as a Domar-weighted sum of technology
and labor supply changes:

d log L,

log Y () /[ZA dlogZz YA
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To a first-order approximation, we can write

AlogY ~ ZA )Alogz; + me
Hence, real output rises if productivities rise, but it also rises if households move from
low wage locations to high wage locations.

In contrast, aggregate efficiency, A(t), does not respond to relocations (see Corol-
lary 1). If households choose to move from low to high wage locations, this has no
tirst-order effect on aggregate efficiency. The increase in wages experienced by movers
is exactly offset by the reduction in the amenity value of the move. Hence, although real
output may rise due to the changes in location, aggregate efficiency does not. We sum-

marize this in the proposition below.

Proposition 3 (First-Order Difference between Aggregate Output and Efficiency). To a
first-order approximation, the difference between aggregate output and aggqregate efficiency are
changes in income caused by relocation:

AlogY —AlogA~ Y AL,

r Zr’ Wy Lr’

Hence, real output and aggregate efficiency can differ, even in sign, to a first-order
approximation. We illustrate this using the simple one-good economy in Section 3.3.

Example 2 (Output versus Aggregate Efficiency). Consider a positive productivity shock
Alogz, > 0 to some region r in the one-good economy in Section 3.3. By Corollary 1, the
change in aggregate efficiency is, to a first-order, equal to

wyLy

Alog A e ————
g Zr’ wr/Lr/

Alogz, > 0,

where w;L; are evaluated at the initial equilibrium (or final) equilibrium. Hence, an in-
crease in productivity in region r always raises aggregate efficiency by that region’s share
in sales. However, the change in real output is given by the growth in total consumption:

Zi’/ Zr(t)Lr(t) err L
R~ Alogz, + W A log L,/
Zr/ Zyl (O)Lr/ (0) Z,,/ w,/L &2r Z Z,,// wr”L 1" &

AlogY = Alog

Whereas Alog A always increases in response to a positive productivity shock, AlogY
may decline if wages in r are sufficiently lower than wages in other regions and enough

people move to r from other regions in response to the increase in productivity of r. In
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such a case, total production of the consumption good declines, so AlogY < 0, but every
agent is weakly better off.

If we define multifactor productivity as output growth minus the growth in quality-
adjusted labor:
Alog AMFP — AlogY — Y " AL,
& & ; Zr’ wr/Lr/ r

then Alog AMF ~ Alog A to a first-order. The intuition here is that if we separate changes
in output due to technology shocks from changes in output due to relocation, then mul-
tifactor productivity, as measured by a national income accountant, coincides to a first-
order with aggregate efficiency.

Before concluding this section, we note an important and tractable special case. Sup-
pose there is no amenity value associated with different locations, and suppose there is a
single consumption good. In this case, real output and aggregate efficiency coincide.

Proposition 4 (Coincidence of Real Output and Aggregate Efficiency). Suppose that ey,
does not vary by h and r, and that there is a common consumption good. Then

A(t) = AMEP(1) = Y ().

This follows from the fact that under these assumptions, L = L®“™P, and changes
in the regional spending shares, x“°P have no effect on relative prices since all house-
holds spend income on the same consumption good (e.g. dx drops out of (19)). Hence,
AP (s) = A;(s). This implies that A(t) = AMEP(t). Furthermore, since every house-
hold chooses location to maximize nominal income, households that move from one lo-
cation to another do not experience a change in their nominal wage, which implies that
dlogY = dlog AMFP — since this holds for any s > 0, by integration, it follows that
Y(t) = AMEP(4).

The assumptions of Proposition 4 hold in many models of occupational (but not spa-
tial) choice. In such models, a typical assumption is that households vary in their effi-
ciency of different occupations, but have the same preferences across occupations, and
consume the same consumption good regardless of their choice of occupation. Under
these assumptions, Proposition 4 guarantees that aggregate efficiency, as defined by the
aggregate consumption-equivalent variation, coincides with changes in real output, as

measured by a national income accountant, in the decentralized equilibrium.
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5 Analytical Description of Nonlinearities

Having understood the first-order properties of A(t), we now probe nonlinearities ana-

lytically.

5.1 Second-Order Results

Corollary 3 (Second-Order Approximation). To a second-order approximation, the change in
aggregate efficiency satisfies

Alog A ~ ) _Ai(0)Alogz; + % Y _dA"(0)Alogz;,
i i

where d)\fomp is the change in the compensated sales of i divided by GDP at the status-quo.

The intuition is very similar to the formulas derived by Baqaee and Farhi (2019) for
an economy without discrete choice. If sales shares in the compensated equilibrium rise
in response to positive productivity shocks, then aggregate efficiency rises more quickly
than its first-order approximation would suggest. If sales shares fall, then the reverse
comp
i
know dL™P(0) and dx; " ¥ (0). Hence, in this section, we focus on describing d.<°™p

happens. Calculating dA (0) is a straightforward application of Proposition 2 if we
and dy; " at the status-quo, and comparing them to their decentralized uncompensated
counterparts.

To simplify the analysis, we focus on the case with only preference heterogeneity and
abstract from skill-heterogeneity. That is, in this section, we assume households have
homogenous skills: ay, = a;» = 1. We discuss how to generalize the results to allow for
heterogeneity in skills in Appendix C.

Suppose Proposition 5 provides a general characterization of spending shares by re-

gion in the decentralized equilibrium, dx(0), and the compensated equilibrium dx<°™P(0).

Proposition 5 (Spending). In the decentralized equilibrium, the spending share in region r sat-
isfies
dlog x; = dlogw, — E, [dlogw]| 4+ dlog L, — E, [dlog L],

where the changes in wages w and locations L are in the decentralized equilibrium. In the com-
pensated equilibrium, the share of spending by households in region r at t = 0 satisfies

dlog?{f’omp = leg pr — IEX [d log p] —+ leg Liomp _ IEX [d log Lcomp] ,
where the changes in prices p and locations L™ are in the compensated equilibrium.
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The intuition is the following. In the decentralized equilibrium, the share of spending
by each location must move in line with the share of income earned by households in
that location. This is the product of wages w;, and population shares L,. A region’s share
of spending rises if wages in that region increase quickly or if households flock to that
region. On the other hand, in the compensated equilibrium, the share of spending in each
region depends on the rate at which the cost of consumption in region r has increased
and the population shares in the compensated equilibrium. If consumption prices rise
quickly in a region, or households flock to a region, in the compensated equilibrium, then
that region’s share of total spending rises.

Proposition 6 provides a general characterization of dL°°™P(0) in terms of the deriva-
tives of the uncompensated labor supply function at the status-quo.

Proposition 6 (Migrations). To a first-order approximation, at t = 0, the change in the share of
households in region r is
dL, =Y dLy ., — Y dL, .y, (20)
r'#r r'#r

where dL,_,, is the share of households that move from r to v'. This satisfies:

aLr wr/ aLr/

AL, = — | =" -
rer aw,,//p,,/ p?’/ awT'/pr

d(

)|
(21)

(o oL, Wy oL, wy
—)|1|=——F—d < d(—
Pr )} {awr’/pr’ pr’ ~ owy/py (Pr

where the changes in wages and prices are the ones in the decentralized equilibrium.
The compensated supply function instead satisfies:

dLimﬂp _ 2 ALeomp _ Z 41.omp

r'—r r—r!’

v £r r'£r

where dL;,OTf; is the share of households that move from r to v’ in the compensated equilibrium. At
t = 0, this satisfies:

oL 1 w Wy w Wy
dL‘f"mfi:—’—(d—’ —d(—~ /)x1[d Spr <d()pe|, (22

T o [wy/py] py (Apr)pr (Apr’ )Pr (Apr)pr - (Apr/ )pr (22)
where the changes in wages and prices are the ones in the compensated equilibrium and dlog A,
at t = 0, is given by Corollary 1.

Equation (21) states that in the decentralized equilibrium, households switch from r
to #’ if the change in L, due to real wage changes in #’ are outpaced by the change in L,/
due to real wage changes in r. The overall change in the share of households choosing 7,

in (20), depends on the sum of all these pairwise switchings. Equation (22) is the counter-
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part to (21) in the compensated equilibrium. Here, households are given individualized
transfers and aggregate factor productivity is adjusted to ensure every household can be
made exactly indifferent to the status-quo. In this case, households switch from r to r/
if the compensated real wage in dollar terms rises faster in #’ than in 7, and the rate at
which households switch depends on the (uncompensated) cross-elasticity of the share
that choose r relative to the real wage in 7’

We illustrate using a simple example below.

Example 3 (Second-Order Approximation of Aggregate Efficiency with Fréchet). Con-
sider again the one good economy described in Section 3.3. We know from Corollary 3

that, to a second-order,
Alog A ~ E,[dlogz] + % [Var, (dlogz) 4+ Cov) (dlog L°™P,dlogz)], (23)

where the variance and covariance operators use A as the probability weights and we use
the fact that dA;" F = d(z, Ly /(L zvLy, 7). In words, the nonlinear change in aggre-
gate efficiency depends on the variance of the shocks and the covariance of compensated
migrations with the shocks. The variance term reflects the fact that, even if households are
not mobile, an increase in productivity in one location raises that location’s sales share,
which magnifies the value of positive productivity growth in that region. The covariance
reflects the fact that if, in the compensated equilibrium, households move to locations
experiencing more rapid productivity growth, then this further boosts the compensated
sales shares of producers in that location, and raises aggregate efficiency.

Suppose that household preferences can be written as uy(cy,, 1) = fr(log(cy) + €n)
for some increasing function f;, where €y, are distributed according to a Frechet distribu-
tion with tail parameter 8. Under this assumption, the share of households that choose
location r given a vector of real wages z is

L,(z) L (24)

LBzl
for some parameters B, > 0. (see, e.g. Redding and Rossi-Hansberg, 2017). Accordingly,
the uncompensated cross-derivatives of supply are:

oL, 1

= —0L.L,—.
ow, S

For simplicity, suppose that initial productivities, z,(0) are the same in every location.

25



Then applying Proposition 6 yields

dlog L:"™ = 0 (dlogz; — E, [dlogzi]).
In this example, it is easy to verify that changes in population shares in the compensated
equilibrium, dlog L®°™P, are the same as the ones in the decentralized equilibrium, dlog L,
up to a first-order approximation.

Substituting this into the approximation for Alog A in (23) yields:

Alog A = E,[dlogz] + %(1 +0)Var, (dlogz).

Hence, the higher is 6, the more convex is aggregate efficiency.'

5.2 Differential Equations

Propositions 5 and 6 allow us to approximate aggregate efficiency A(t) to a second-order
approximation given expenditure shares, population shares, and uncompensated elastic-
ities. However, computing changes in aggregate efficiency beyond second-order requires
evaluating compensated population L™ and spending shares x“°"P away from status-
quo at t > 0. This can be accomplished via Proposition 1 and simulation methods (i.e.
simulate a large population of households and apply Proposition 1). However, there is
one noteworthy case where can characterize log A(t) nonlinearly without using simula-

tion methods. This is when the following assumption holds.

Assumption 1 (Common Consumption Good and Linear g). Suppose that there is one
common consumption good in every region, p, = p,,, and denote its price by pg. Sup-
pose that preferences take the form uy(cp, ) = fj,(c, + €p;) for some arbitrary increasing
function fj,.

We show in Appendix A that the requirement that u,(cy,, I) be representable as f;,(cj, +

€p) implies that the supply function must have symmetric cross-derivatives:

oL, aL!

d(wy/po) 9w,/ po)

151f instead the share function were logit (i.e. g(c;) is linear and ¢, are type I extreme value with pa-
rameter 0'°81t), then Alog A ~ [E, [d log z] + %(1 + 6'8iz) Var, (dlogz) . Calibrating 9L, /9z,s to be the same
as in the Frechet model implies 81°8i* = 6/z. Hence Alog A would be the same in the two models up to a
second-order approximation.
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An example is the logit supply system described in Equation (10). A counterexample is
the Frechet supply system in (24).

Proposition 7 (Exact Characterization without Simulation). If Assumption 1 holds, then the
compensated supply function coincides with the (uncompensated) supply function: L™ (w, p,u) =
L(w, p). Hence, for any value of t > 0, we have

JL, W, w
s _d r
Z a [w,/ po] (Apo) (Apo

AL, = ", (25)

where prices and wages are evaluated in the compensated equilibrium at t.

Since there is a common consumption good, the distribution of spending x;"© (t) has
no effect on compensated sales shares A““™P(t). Hence, we can combine Proposition 7
with Theorem 2 and Proposition 2 to compute A(t) as the solution to a system of ordinary

differential equations. We provide an example below.

Example 4 (Occupational Choice Model). Suppose consumption is a CES bundle of out-
puts from different industries:

[4

1 6 90%1
y= (ZQOerr > ’

where the units of quantities are chosen so that (), are expenditures in the status-quo.
Industry r’s output is
xOr - ZrLr.

Suppose that workers utility functions can be written as
uy(cp, ) = cp + €np,

where €y, is type I extreme value. In this case, L(p, w, T') has the standard logit functional

form. This implies that

oL,
— = 0L,L,.
0 [wr/ /po]
Substituting this into (25) yields
dlog L;"™" = 6 (d [wi/ (Apo)] — Epcomp [d [w;/ (Apo)]]), (26)

where the wages and prices are evaluated in the compensated equilibrium. We now apply
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Proposition 2. The sales share of industry 7, in the compensated equilibrium, is given by
its share of the wage bill:

dlog AS™ = dlogw; + dlog L™ — I yeomp [dlog w + d log L™ (27)

At the same time, the sales of share industry r, in the compensated equilibrium, is also
given by the share of household spending on industry r:

dlog A;"™ = (6p — 1) [dlog z; — dlog w; — E yeomp [dlogz — dlog w]], (28)

where we use the fact that dlog p, = dlogw, — dlogz,. Shephard’s lemma implies that

the consumer price index in the compensated equilibrium is

dlogpo = ZAfomp [dlogw; — dlogz]. (29)
)

Finally, from Theorem 2, the change in aggregate efficiency is:

dlog A =Y A""Pdlogz;. (30)
j

Equations (26)-(30) form a system of ordinary differential equations that can be solved to
obtain A(t) without simulation methods. The boundary conditions are that at t = 0, ex-
penditure and population shares coincide with the status-quo, and A(0) = 1. Solving the
system is simple: we discretize the productivity shocks, and iterate on the linear system,

updating variables each time.

6 Comparison to Other Measures of Aggregate Efficiency

In this final section, we compare our measure of aggregate efficiency with two popular
alternatives in the literature. First, we contrast our approach with the popular utilitarian
or “expected” utility measure of aggregate welfare. Second, we compare our results to

the sum of compensating variations.

6.1 Utilitarian Social Welfare

Definition 6. Define utilitarian social welfare function to be
U(e) = lE[rr}ax uh(clh(t),lh)], (31)
h
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where [ is a population-weighted cross-sectional average and ¢;, (t) is consumption in
location [}, at t. The consumption-equivalent variation for utilitarian welfare is AU (¢) that

solves:

U(e(t)/AY (1)) = U(c(0)),

The function in (31) is sometimes called “expected utility” but since households do not
face lotteries and make choices over taste parameters, this is a misleading label. Instead,
as pointed out by Donald et al. (2023), (31) is more appropriately thought of as a particular
social welfare function.'®

Unlike A(t) and Y (t), the average utility measure AY(t) is not invariant to monotone
transformations of individual utility functions. In particular, its value is not pinned down
by any observables. To see this, recall that uy(c, 1) = f,(g(cp) + €n1), where fj, is an ar-
bitrary strictly increasing functions. Changes to f, have no testable implications in terms
of households’ choices. In particular, any choice of f; represents the same underlying
preference relation ~;. However, altering f;, has important implications for the value of
Al

We illustrate this fact using a simple example below.

Example 5 (Average utility not pinned down by observables). Consider a two region
example, and suppose agent & has utility function:

uy(cr, 7) = eppCy,

where ¢, are i.i.d Fréchet random variables with tail parameter 6. It is well-known that
this implies

CO

p

Zr’ Cf/ .

As mentioned before, utility functions are only pinned down up to monotone transfor-

Lr:

mations. So, suppose that we instead consider
up(cr, ) = EpepyCy,

where €, is an h-level shifter. Any conceivable choice data generated by the model is
consistent with every value of &, > 0. However, the average utility metric AY(t) depends

16Expected utility is formally defined to be a representation of an ordinal preference relation of a single
agent over lotteries of allocations (see, e.g., chapter 6, of Mas-Colell et al., 1995). In this paper, each house-
hold has fixed preferences u;, and there is no lottery across household tastes. This is to say, no household
ever makes a choice about the parameters of their utility function, which means that the ranking of u; and
uyy has no testable or observable implications.
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on the choice of €. In particular, using the law of total expectation, we can write

EE [é,E [maxy, {c}, (t)en, }| €r]]
E [éh]E [maxlh{clh(O)shlh}‘ éh“ ’

AY(t) = (32)

If we further assume that the household-level shifter ), is independent of the taste shifters
{ey,}, then, as shown by Redding and Rossi-Hansberg (2017), AY(t) can be written in

closed-form as!”

AY(t) =

0 0 0
cq(t) +c5(t) ] . (33)

c§(0) + c§(0)

This is a very popular measure of aggregate welfare in spatial models.

However, inspection of Equation (32) shows that the untestable assumption about the
joint independence of €, and ¢, is important. Other assumptions will lead to other social
welfare functions that are consistent with the same observables. For example, suppose
instead, of assuming &, is independent of ¢, we assume that &, is equal to 1/E[ej,|h].
That is, we normalize the utility of agent / by the average value of ¢, so that, on average,
taste shocks for every household are equal to one (some households cannot have higher
taste parameters in every location).

Under this assumption, (32) is instead,

D(Ly(t))e1(t) + D(La(t))ea(t

Ufpy —
AT(t) = D(L1(0))c1(0) + D(L2(0))c2(0)

where D(x) = [ ey (u_é +(1- u)_%du. Hence, with this alternative untestable and
equally plausible assumption about the average level of taste shocks by household, we
arrive at different results about AY(t). Since two assumptions are observationally equiv-
alent, there is no conceivable choice data that can distinguish between these two assump-
tions.

The previous example shows that U(c) depends on an untestable assumption about
how individual’s ordinal preference relations are represented by utility functions. Nev-
ertheless, one might think that setting f,(x) = x might result in a U(c(t)) which never-
theless is similar to A(t). This turns out to not be the case in general, as the following

example shows.

Technically, if < 1, then E[uy(c;(t), [t))] diverges under the assumption that &, is independent of ¢,
However, since the ratio is well-defined, AY (t) is still well-defined.
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Example 6 (Average utility versus aggregate efficiency). Consider again Example 5. Sup-
pose there is a common freely-traded consumption good produced linearly from labor,
with productivity z, in location r. Under the typical assumption that €, is independent of
epy, it is well-known that to a first-order approximation, changes in log AY are a popula-

tion weighted sum of changes in productivities:

Alog AY(t) ~ Y L.(0)Alogz,.
r

This does not coincide, even to a first-order, with changes in aggregate efficiency as mea-
sured by A, because Alog A ~ Y, A,(0)Alogz, (unless all regions have the same initial
productivity). It can easily be the case that Alog A > 0, so that winners can compensate

losers and have resources left over, but have Alog AY < 0.

In general, AY(t) has embedded within it some distributional concerns — which get
stronger as mobility falls — even though this may not be readily apparent. To see this,

consider the following example.

Example 7 (Optimal policy for average utility). Consider again the economy in Exam-
ple 6. Suppose that the government pursues place-based policy to maximize U(c). That

is, the government considers setting real consumption in each location according to
max U(cy,¢2) (34)
Cr

subject to the constraint that total consumption is feasible:
Z Lycr = Z Lyz,
r r

and that the share of households in each region is

0

_ r
L=ty
(e

One can show that under the common assumption that €, is independent of ¢, the opti-

mal ¢, is a convex combination of production in r and average production:

0 1
Cp = 9+1zr+ 011 (;chr) . (35)

Hence the optimal ¢, redistributes income from rich to poor regions. Under the assump-
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tion that &, is 1/E[ey, | h], the optimal ¢, still redistributes income from rich to poor regions,
but by a different amount. That is, different untestable but equally plausible assumptions
lead to different amounts of “optimal” place-based redistributive policy.

Of course, by the first welfare theorem, the decentralized equilibrium in this model
is Pareto efficient. Hence, if we swap the objective of the government to be to maximize
aggregate efficiency, A, then the government would not intervene in the equilibrium al-
location since it is already Pareto efficient. In contrast, the “optimal” allocation according
to (35) is not Pareto efficient (except in knife edge cases). Intuitively, in this allocation,
the marginal product of choosing to live in a region, z;, is not equal to the payment the
marginal household receives. Hence the planner solving the problem in (34) sacrifices
efficiency to pursue distributional goals.

There is a case where utilitarian welfare, or the social surplus function, can be used to

calculate A(t). This happens if Assumption 1 holds.

Proposition 8 (Using Average Utility to Calculate A). Suppose that Assumption 1 holds.
Let w(z,Z) be real wages in a decentralized equilibrium with productivity parameters z and
aggregate factor productivity Z. Then, A(t) solves

U(w(0)) = U(w(z(t), A(t))/ A(t)), (36)

where U(c) = E[max;, c;, + €py, |-

In words, Proposition 8 provides a set of assumptions under which a utilitarian so-
cial welfare function can be used to compute A(t). In particular, A(t) is the reduction
in labor productivity in every location such that utilitarian welfare, with productivity
shocks z(t), is equal to welfare under the status-quo. Notably, w(z(t), A(t)) need not be
the same as the real wages in the decentralized equilibrium given the same productiv-
ity shifters w(z(t),1). This is because, as we scale aggregate factor productivity to make
compensations feasible, agents may switch locations, which would affect real wages.

The example below illustrates Equation (36) using a simple example.

Example 8 (Using average utility to calculate aggregate efficiency with logit). Consider
the single good economy example from Section 3.3. There is a single consumption good
produced linearly from labor and productivity in each location r is z,. Given a vector of
productivity shifters z and an aggregate factor productivity shifter Z, the real wage per
efficiency unit of labor is simply w,(z,Z) = z,. Suppose that g(c) = ¢ and taste shifters
are drawn from a Type I extreme value distribution, so that the uncompensated share
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function is of the logit type. Then (36) is simply equivalent to Equation (15):
U(z(0)) = Zexp(@zr(O) +B,) = Zexp(er(t)/A(t) + B,) = U(z(t)/A(t)),

where B, are exogenous shifters. In this example, A(t) = AY(t), since w(z(t), A(t)) =
w(z(t),1).

The proof of Proposition 8 is instructive. It must be that, in the compensated equilib-
rium, net transfers are feasible:

/ en (WP (1) / A(t), ud)dh = 0.

We can totally differentiate this function with respect to t, use the envelope theorem, and
then integrate with respect to t to get that

/OtZLfomp [w™P(s)/ A(s), u’]ds = 0.

That is, the area under the compensated supply function must be zero. Under the main-
tained assumptions, Proposition 7 implies that we can replace the compensated share
function with the uncompensated share function, which does not depend on u:

/OtZLr[w(z(s),A(s))/A(s)]ds —0,

where we use the fact that compensated real wages at s coincide with real wages in the
decentralized equilibrium w(z(s), A(s)) with productivity shifters z(s) and total factor
productivity A(s). The result then follows from the Williams-Daly-Zachary theorem,
which states that integrating the uncompensated share function under the maintained
assumptions yields the social surplus function defined in (36).

6.2 Kaldor-Hicks Efficiency

In partial equilibrium contexts, where there is an outside good, like money, a common
measure of aggregate efficiency is the sum of compensating variations (Small and Rosen,
1981). This measure, also known as the Kaldor-Hicks measure of efficiency, can be defined
as follows:

S(t) = — /eh(p(t),w(t),ug)dh,
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where ¢, is the net expenditure function — the transfer & needs to attain ug, given prices
and wages. The scalar S(f) measures the amount of money left, in terms of the numeraire,
after winners exactly compensate the losers, holding prices and wages constant at ¢.

This measure has undesirable properties in general equilibrium, when wages and
prices endogeneous respond to redistribution. The following example demonstrates that
a pure transfer, which moves the allocations along the Pareto frontier, can nevertheless
cause Kaldor-Hicks efficiency to rise.!® By continuity, this implies that the consumption
possibility set can strictly shrink and yet S(f) may rise.

Example 9 (Redistribution raises Kaldor-Hicks efficiency). Consumption in each loca-

tion is a Cobb-Douglas aggregator of inputs from different locations:

/chl[lh =rldh =x5 [ xg,_“)/R,

r"eR

where « > 0 controls the degree of home bias in consumption. Output in location r is

Zxr/, = Lr.
v

produced one-for-one from labor:

Workers’ utility functions are

up(cn,r) = fulen + €nr),

where f;, is any monotone increasing function. Consider an economy with two symmet-
ric regions and suppose that €;,; = 1 and ¢, are i.i.d uniform random variables in the
interval [1 — 4,1 + a], where a controls the elasticity of location choices to changes in real
consumption. This elasticity falls to zero as a rises (since the density of households that
are on the margin of switching between locations goes to zero).

The status-quo is a symmetric equilibrium without transfers. Consider a lump-sum
transfer from households in region 2 to region 1. That is, agents that chose location 1 in
the status-quo, [;(0) = 1, receive a lump-sum transfer of T;. The transfer is financed by
a lump-sum tax on agents that chose location two in the status-quo, /;,(0) = 2. Budget
balance requires the lump-sum tax T, to be T, = L1(0)/L»(0)T.

We solve for the equilibrium with redistribution at ¢, after the redistribution, and cal-
culate the Kaldor-Hicks efficiency measure, S(t). Figure 1 reports S(t) (relative to nominal

18This is phenomenon also occurs in general equilibrium models with continuous choice and is known as
the Boadway (1974) paradox. See Baqaee and Burstein (2025) for more information in a continuous choice
setting.

34



GDP, which is the numeraire) for different levels of worker mobility (by varying the pa-
rameter 2). We measure mobility by the mass of agents that start in location 2, for whom

1,(0) = 2, and move to location 1 after the redistribution, for whom I, (¢) = 1.1

Figure 1: Kaldor-Hicks Efficiency as a function of mobility for pure transfer
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Figure 1 shows that Kaldor-Hicks efficiency, S(t), rises in response to a pure redistribu-
tion. In contrast, aggregate efficiency, A(t), measured using the aggregate consumption-
equivalent is unchanged at A(t) = A(0) = 1 for every value of mobility and preference
parameters. The reason S(t) is non-zero for pure redistributions is because redistribu-
tions change relative wages and prices in general equilibrium. Since S(t) holds wages
and prices constant in the compensation, undoing the transfers does not necessarily re-
sultin 5(t) = 0. The magnitude of S(t) depends on parameters — two important param-
eters are the extent of mobility and home bias. For example, if households do not have
heterogeneous tastes, then real wages are equated in the two regions by arbitrage. Since
productivities are symmetric, this implies that relative wages and prices are also equated
in equilibrium. In this limit, the transfer does not alter relative wages and prices, and so
S(t) tends to 0 as we increase mobility.

Similarly, in the absence of home bias (¢« = 0), then S(t) = 0. The utility agent &
gets in location r is (w, + Tj)/py. Without home-bias, the price of consumption in the
two locations is the same: p; = py. Hence, because Assumption 1 holds, the transfer T},

does not change h’s location choice. That is, L(t) = L(0). Furthermore, since there is no

9In our numerical example, we set the transfer to be 10% of wages in the status-quo T; = 0.1wy(0).
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home-bias, agents in both locations spend their income in the same proportion, so that
w;L; = 1/2 (recall that GDP is the numeraire). Since location choices do not respond to
the transfers, wages also do not respond to the transfer. Since wages do not respond to the
transfers, prices do not respond to the transfers. Since prices and wages do not respond
to the redistribution, S(¢) = 0 in this limit.

Example 9 illustrates that Kaldor-Hicks efficiency is a poor measure of pure efficiency
in environments where prices and wages are endogenous to the distribution of income

and expenditures.

7 Conclusion

We generalize the cost-benefit approach of Harberger (1971) and Small and Rosen (1981)
to measure aggregate efficiency in general equilibrium environments with discrete choice.
Our measure converts shocks into a welfare-equivalent change in total factor productiv-
ity. The economies studied in this paper are perfectly competitive, Pareto-efficient, and
compensations can be made using lump-sum transfers. In ongoing work, we extend the
approach in this paper to analyze settings with distortions, externalities, and limited re-
distribution tools. For an analysis of these issues in general equilibrium economies with
heterogeneous agents and continuous choice, see Baqaee and Burstein (2025). Using this
approach to analyze optimal policy problems, where maximizing A is the objective func-

tion, in distorted settings is another interesting area for future research.
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Appendix A Implications of ¢(-) for behavior

Since utility is only pinned down up to monotone transformations, the function f; has no
observable implications. However, the shape of ¢(cj;) has testable implications, since it
controls the way income and substitution effects interact with each other. In particular,

the share function L uniquely pins down g(cj,) up to an affine transformation.

Proposition 9 (Relation between L and g). The population share function L pins down the
function g(cy,) up to an affine transformation. A notable implication is the following. The popu-
lation share function without transfers L(p, w, 0) has symmetric cross-derivatives in real wages
(L, /0(wy / py) = oL, /d(w,/ py)) if, and only if, g(cy,) is a linear function of cy,.

That is, the functional form of g¢(cj) has testable implications. The linear case is note-
worthy because, under this assumption, some of our calculations dramatically simplify.

Intuitively, if g(cj,) is linear, then a lump-sum transfer (in consumption units) to house-

hold & will not change household #’s choice of location.?’

Appendix B Proofs

[To be added.]

Appendix C Extension with Heterogeneous Skills

[To be added.]

20As another example, the population share function without transfers L(p,w,0) has symmetric cross
semi-elasticities in real wages dL,/dlogw, /p, = dL,./dlogw,/p, if, and only if, g(c) is a log function of
cp- The commonly used constant-elasticity share function is a special case and requires that g(cj) be log.
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