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Abstract

This paper quantifies misallocation caused by limited risk-sharing and imper-

fect consumption-smoothing. We measure these losses in terms of how much of

society’s resources would be left over if financial markets were complete and each

consumer were compensated to maintain their status-quo welfare. Using exact for-

mulas and approximate sufficient statistics, we analyze standard incomplete-market

environments—ranging from closed-economy Bewley-Aiyagari models to multi-country

settings with input-output linkages. We find that incomplete insurance against household-

level idiosyncratic risk is very costly—about 20% of aggregate consumption—based

on both structural models and sufficient-statistics computed using household con-

sumption panel data. By contrast, the cost of imperfect international financial mar-

kets (abstracting from within-country heterogeneity) is roughly 5%, driven by the in-

clusion of fast-growing economies such as China and India. Unexploited risk-sharing

opportunities among countries at similar levels of development, on the other hand,

are fairly limited (less than 1%).
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1 Introduction

The inability of households to perfectly share risks across states of nature or to smooth
consumption over time is a form of resource misallocation. This paper quantifies this mis-
allocation by asking the following counterfactual question: if financial markets were com-
plete and every household were compensated so that no one was worse off than under the
status quo, how much of the available resources would be left over? We characterize this
measure of misallocation in a range of workhorse models with incomplete financial mar-
kets — both in closed-economy (domestic) and open-economy (international) settings.
We provide exact formulas for these welfare losses and show how to approximate them
using sufficient statistics derived from observed consumption allocations.

The outline of the paper is as follows. In Section 2, we provide a general defini-
tion of misallocation using the aggregate consumption-equivalent defined by Baqaee and
Burstein (2025b). We measure misallocation by how much the complete-markets con-
sumption possibility set can shrink while keeping every agent at least indifferent to their
status-quo allocation? The resulting contraction factor is a measure of the waste due
to market incompleteness. Our measure is a multi-agent extension of the consumption-
equivalent variation defined by Lucas (1987), and builds on ideas from Hicks (1939),
Kaldor (1939), Allais (1979), and Debreu (1951). Its key property is that it quantifies
the distance from the efficient frontier without making interpersonal utility comparisons.
Our measure easily accommodates heterogeneous preferences, is invariant to monotone
transformations of utility, and does not conflate inequality with inefficiency. We use a
result from Baqaee and Burstein (2025b) to compute misallocation as the solution to a
fictitious utility-maximization problem.

In Section 3, we set up a simple closed economy model with idiosyncratic risk. We
show that misallocation is equal to the certainty-equivalent of the aggregate consumption
process divided by the sum of certainty-equivalents of each households’s consumption
process. In this special case, our measure is similar to the efficiency measure proposed by
Benabou (2002) (though ours is a result rather than a definition).

We provide a second-order approximation of misallocation in terms of deadweight-
loss (Harberger) triangles. This sufficient statistic formula can be computed using only
consumption panel data and a value for the elasticity of intertemporal substitution. In
particular, we do not need to know the nature of households’ financial market imperfec-
tions, income processes, or ownership of assets.

We apply these formulas to an off-the-shelf calibration of a Bewley (1972) economy. We
find that imperfect insurance against idiosyncratic risk is equivalent to a loss of around
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20 percent of aggregate consumption. That is, if markets were complete, we could make
every agent indifferent to the status-quo and have 20% of the aggregate consumption
good left over in every date and state. This loss is roughly three orders of magnitude
larger than Lucas’s (1987) estimate of the cost of aggregate volatility in a representative-
agent economy.1 Furthermore, although the economy is far from the efficient frontier, our
second-order approximation is extremely accurate. The efficiency gains from completing
financial markets are roughly half of as large as the distance to first-best according to the
popular behind the veil-of-ignorance social welfare function. This is because the veil-of-
ignorance social welfare function takes into account inequality as well as inefficiency.

In Section 4, we extend the simple model to allow for labor-leisure choice and for
aggregate capital accumulation. Since our measure of misallocation is defined in very
general terms, we can apply the same definition with these additional ingredients. In this
case, the consumption possibility set also includes leisure and takes into account the fact
that the aggregate capital stock is endogenous. With these ingredients, our measure of
inefficiency also takes into account inefficiencies caused by excessive capital accumula-
tion, due to the precautionary motive, and distortions in labor-leisure decisions. We also
show that with labor-leisure choice, our measure differs from the measure of aggregate
efficiency proposed by Benabou (2002), which has some counterintuitive properties. For
example, we show that among points on the Pareto frontier, the Benabou (2002) measure
may strictly prefer points with more inequality. By continuity, this also means that it may
prefer Pareto-inefficient allocations to Pareto-efficient ones.

In Section 5, we introduce international trade. We study a setup with multiple coun-
tries, industries, and international input-output linkages. We extend our second-order
approximation to allow for these ingredients. Our approximate sufficient-statistics for-
mula depends only on observed nominal consumption expenditures and real-exchange
rates by country over time, the static input-output network at one point in time, and
elasticities of substitution in consumption and production. In particular, applying the
formula does not require modelling financial market imperfections, ownership of assets,
the exogenous productivity processes of each country, or separating consumption fluctu-
ations due to wedges from those due to productivity shocks. We show, using Monte Carlo
examples, that our second-order approximation performs well even for large shocks.

1Following Lucas’ estimates for aggregate consumption, a series of papers have estimated the gains from
eliminating volatility in settings with heterogeneous agents. See, for example, Imrohoroğlu (1989), Atkeson
and Phelan (1994), Storesletten et al. (2001), and Constantinides (2025). To aggregate welfare gains across
agents these papers rely either on a social welfare function (e.g. “average utility” or veil-of-ignorance) or
have ex-ante symmetry (so that welfare gains are the same for all agents). Our paper complements this
literature, since we do not use either a social welfare function nor assume ex-ante symmetry.
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In Section 6 we take our sufficient statistics deadweight-loss triangle formulas to mi-
croeconomic (household-level) and macroeconomic (country-level) data. In Section 6.1,
we study misallocation from incomplete risk-sharing in household consumption panel
data from the United States (the Panel Study of Income Dynamics, PSID, database). We
find that misallocation losses are similar to those in an off-the-shelf calibration of the Be-
wley model — roughly 20% of aggregate consumption in every period and state. Losses
are greater, the lower is the elasticity of intertemporal substitution and the interest rate.

In Section 6.2, we study misallocation from imperfect consumption-smoothing and
risk-sharing using international macroeconomic data. For this second exercise, we as-
sume each country has a representative agent, and quantify losses from the absence of
complete financial markets between countries. Our model has 32 countries, 54 industries
in each country, and input-output linkages. We calibrate elasticities of substitution and
apply our formula to a sample from 1970 to 2019. We find misallocation losses roughly
in the 5% range. That is, if financial markets were complete and every household was
compensated to be indifferent to the initial allocation, then there would be 5% of every
consumption good left in every date and state. This result crucially depends on the inclu-
sion of fast-growing countries. Hence, the gains are primarily due to unexploited gains
from intertemporal trade between countries. If we exclude fast-growing countries, like
China and India, then misallocation losses drop to around 1%. We consider sensitivity
analysis and show, once again, that losses are higher if the intertemporal elasticity of sub-
stitution is lower. We also show that losses are larger if the Armington trade elasticity
is higher. Intuitively, there are more unexploited opportunities to share risk and smooth
consumption, conditional on the data, if the foreign and domestic goods are more substi-
tutable.

These results underscore the potentially large welfare gains from more complete risk
sharing, especially across individual households in domestic settings or between emerg-
ing and developed economies. Risk-sharing opportunities among countries at similar
levels of development, on the other hand, are fairly limited.

Relation to companion papers. Although this paper is self-contained, it has two com-
panions. Baqaee and Burstein (2025b) provides a general framework for studying aggre-
gate efficiency with heterogeneous agents. Many of the results in this paper are applica-
tions or extensions of the general approach in that paper. In the other companion paper,
Baqaee and Burstein (2025a), we apply the same framework to study changes in aggregate
efficiency in spatial economies with discrete choice and heterogeneous consumer tastes.
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Related literature. This paper is related to the literature that analyzes the efficiency im-
plications of financial market incompleteness. There are two main branches of this litera-
ture. The first branch is concerned with domestic risk-sharing of idiosyncratic household-
level risks in closed-economy settings. The second branch analyzes efficiency of risk-
sharing in an international context with nontraded goods. Our paper provides a unified
approach for both branches of the literature. We discuss these two branches in sequence.

The first branch derives from Bewley (1972) and its extensions, including Imrohoroğlu
(1989), Huggett (1993), and Aiyagari (1994). To evaluate aggregate welfare in this class
of models, there are two common approaches. The first is to use a social welfare func-
tion, typically by appealing to behind-the-veil of ignorance logic of Harsanyi (1955).2 It is
understood that social welfare functions, including the behind-the-veil one, embed some
distributional judgement and require interpersonal comparisons. If preferences are risk-
averse, the behind-the-veil measure is averse to inequality. The second approach, follow-
ing Benabou (2002) and then Floden (2001), aims to separate Pareto-efficiency considera-
tions from redistributional ones. These measures evaluate the value of an allocation using
the sum of individual consumption certainty-equivalents. Both the veil-of-ignorance ap-
proach and the Benabou (2002) approach rely on the assumption that households have
the same preferences. This means they are not applicable to international settings where
households in different countries consume different goods.

In the closed-economy setting, our measure agrees with the one proposed by Ben-
abou (2002) if we abstract from labor-leisure choice. However, even abstracting from this,
our paper complements Benabou (2002) and the literature that followed it by providing
a second-order approximation of the efficiency losses from imperfect risk-sharing. Our
approximation formula, which is a Harberger (1964) triangles formula, requires only esti-
mates of the elasticity of intertemporal substitution, the risk-free interest rate, and second
moments of the household consumption allocations. This allows us to quantify misallo-
cation with weaker structural assumptions.

Our focus is on the distance of the allocation from the Pareto frontier. This means
that, when financial markets are completed, we allow for lump-sum transfers between
households to ensure everyone is compensated. Some papers in this literature, including
Benabou (2002), consider constrained efficiency and second best policies (with imperfect
redistribution). Although our framework can be applied to study such questions, we do
not pursue them in this paper. (See Baqaee and Burstein, 2025b for examples).3

2Some examples include Heathcote et al. (2008), Conesa et al. (2009), Dávila et al. (2012), Krueger et al.
(2016), and Boar and Midrigan (2022).

3Namely, our Proposition 1 applies in situations where lump-sum transfers are not available. Extending
our approach to second best scenarios means that we would apply Proposition 1 to a restricted consump-
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The second branch of the risk-sharing literature focuses on the international dimen-
sion of the problem — taking the fact that some goods are non-tradeable into account.
Some examples include Van Wincoop (1994), Gourinchas and Jeanne (2006), Fitzgerald
(2012), Heathcote and Perri (2014), Fitzgerald (2024), Corsetti et al. (2024), and Aguiar
et al. (2025). The approach to quantifying inefficiency, or aggregate welfare, in this branch
of the literature is more eclectic. Some papers assume ex-ante symmetric countries, so that
the loss from restricting trade in financial assets is also symmetric. Some papers eschew
aggregate comparisons and report country-by-country welfare changes only. Lastly, some
papers use Bergson (1954)-Samuelson (1956) social welfare functions, typically a so-called
utilitarian function. Of course, there are also papers that analyze the efficiency properties
of the decentralized equilibrium, without quantifying inefficiency per se, for example
Cole and Obstfeld (1991), Backus and Smith (1993), and Lewis (1996).

Our paper also contributes to this literature. Given the way we measure aggregate
efficiency, we do not need to impose that countries be ex-ante symmetrical or to use a
social welfare function. Accordingly, our measure relaxes the unrealistic assumption of
symmetry, while avoiding interpersonal utility comparisons and remaining neutral on
distributional issues. On a methodological front, we derive sufficient statistics formulas
that can be applied to the data without requiring knowledge of the productivity shocks
that hit the economy.

Our paper is also related to recent work that provides approximate decompositions of
changes in aggregate welfare using social welfare functions, for example Bhandari et al.
(2021) and Dávila and Schaab (2022, 2023). Our paper is different because the measure
of aggregate efficiency we use is distinct from the measures used in these papers in two
ways. First, we do not specify a social welfare function. Second we define aggregate
efficiency exactly and not as part of an approximate decomposition of aggregate welfare.
This means that our measure can be integrated, allowing us to study the effect of large
changes and, that generically, it does not coincide with what is referred to as efficiency in
these papers.

Of course, our paper is also related to a different literature that studies the efficiency
consequences of misallocation, following Harberger (1954), and more recently, Restuccia
and Rogerson (2008) and Hsieh and Klenow (2009). From a methodological and concep-

tion possibility set accounting for limited redistribution. This is related to Farhi and Werning (2012), who
quantify the aggregate welfare gains from capital taxation in an incomplete market model with private in-
formation, using the resources saved when implementing the inverse Euler equation while holding labor
decisions and utilities unchanged. Another approach to evaluate second-best policies in incomplete market
environments is to look for robust Pareto improvements, which weakly relax all constraints, as in Aguiar
et al. (2024).
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tual point of view, our paper is very closely related to this literature, though we study a
different type of misallocation. Whereas this literature typically emphasizes static cross-
sectional misallocation in production, we focus on dynamic stochastic misallocation in
consumption. Notwithstanding this difference, our methodological approach is similar.
We analyze the distance to the Pareto-efficient frontier, we use reduced-form wedges to
capture the frictions in the decentralized equilibrium, and we repurpose the triangles for-
mulas developed by Baqaee and Farhi (2020) to study a very different class of problems.4

2 Misallocation Due to Market Incompleteness

Consider an economy populated by agents indexed by h. Each agent h has non-satiated
ordinal preferences ⪰h over bundles of commodities ch, which are time and state-contingent.
The consumption stream ch contains everything the agent has preferences over — so, in
a model with labor-leisure choice, it would include leisure. Preferences are represented
by utility functions uh(ch). A consumption allocation is a matrix c = {c1, . . . , cH} of con-
sumption bundles for each agent. Denote the consumption allocation in the equilibrium
with incomplete markets by c0. We refer to c0 as the status-quo allocation. Define C to
be a set of feasible consumption allocations. For most of the paper, we focus on the case
where C is the set of Pareto-efficient consumption allocations given complete markets.
Although in principle, and in some examples, C can be a second-best feasible set (given
other distortions).

We define misallocation as the distance to the frontier measured using the aggregate
consumption-equivalent variation of Baqaee and Burstein (2025b).

Definition 1. Misallocation relative to the frontier of C is measured by the maximum con-
traction of C such that every agent can be kept at least indifferent to the status-quo allo-
cation. Formally,

A(c0, C) ≡ max
{

ϕ ∈ R : there is c ∈ ϕ−1C and uh(ch) ≥ uh(c
0
h) for every h

}
. (1)

The cardinal value of A is interpretable. For concreteness, say, A = 1.01. This means
that it is possible to make everyone at least as well off as in the status-quo and discard
1% of every good (more precisely, 1 − 1/A% of every good). Therefore, A is a measure

4Some papers, such as Buera et al. (2011), Midrigan and Xu (2014), Moll (2014), and Bigio and La’O
(2016), study misallocation from financial frictions on firms. It would be interesting, but beyond the scope
of this paper, to combine those frictions with the ones on households that we focus on. Proposition 1 can
be applied to do this.
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of the economic waste in the equilibrium allocation. Importantly, in calculating A, we do
not need to take a stance on which agents would or should receive these extra resources
if one were to complete markets. That is, this aggregate efficiency measure is silent on
redistributions.

To calculate A(c0, C), it is useful to define the consumption-equivalent variation at the
individual level.

Definition 2. The consumption-equivalent variation for agent h, denoted by ũh(ch), is the
solution to

uh

(
ch
ũh

)
= uh(c

0
h).

In words, ũh(ch) is the amount the consumption stream ch has to be scaled to make
it exactly as desirable to agent h as their status-quo allocation. By construction, ũ(ch) is
homogeneous of degree one.

We use Theorem 1 from Baqaee and Burstein (2025b) to characterize A as the solution
to a representative-agent planning problem.

Proposition 1 (Calculating misallocation via a planning problem). Misallocation relative to
C is given by

A(c0, C) = max
c∈C

[min {ũ1(c1), · · · , ũH(cH)}] . (2)

This proposition converts the problem of calculating misallocation into one of maxi-
mizing utility for a fictional agent. This fictional agent has Leontief preferences over the
consumption-equivalent variations of the households relative to status-quo.

The function minh∈H {ũh(ch)} in Proposition 1 is not a Rawlsian social welfare func-
tion. First, this function depends on the minimum certainty-equivalent variation relative
to the status-quo, whereas a Rawlsian social welfare function depends on the minimum
level of utility. Second, whereas the allocation that maximizes a social welfare function
is the optimal allocation, the allocation that maximizes (2) has no such interpretation.
Rather, it is simply an analytical device for measuring misallocation A. Indeed, we do not
ever define the optimal allocation on the consumption possibility set C.

We use Proposition 1 throughout the paper to study misallocation due to incomplete-
ness of financial markets in closed and open economies.

3 Baseline Closed Economy

We begin with a simple economy where all agents consume the same consumption good
every period. This nests one-sector models like Bewley (1972) and Huggett (1993), but it
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also accommodates multi-sector versions of these models with input-output linkages, as
long as every household’s static consumption aggregator is the same and factors in each
period are inelastically supplied (i.e. no physical capital accumulation).

We begin this section by setting up the environment. We then provide exact and ap-
proximation characterizations of misallocation due to incomplete consumption-smoothing.
In the baseline, we abstract from labor-leisure choice, capital accumulation, production
inefficiencies, and non-traded goods. We extend our results to allow for these additional
ingredients in subsequent sections.

3.1 Environment

Each household, indexed by h, has intertemporal preferences over state-contingent con-
sumption streams ch represented by the utility function

u(ch) =
1

1 − 1/η ∑
s

π(s)
∞

∑
t=0

βtcht(s)
1− 1

η . (3)

Here, cht(s) denotes consumption of household h at time t in state s (which may be a
homothetic bundle of many goods), the discount factor is β < 1, and η > 0 is the elasticity
of intertemporal substitution (EIS). The probability of state s is denoted by π(s), where
each state s indexes a sample path of shocks.

In every period, t, of every state s, production takes place. We assume that production
in each period is statically efficient.5 Since we abstract from capital accumulation, en-
dogenous labor choice, and all households value the same consumption good, we do not
need to specify the exact nature of the production structure. (There could be many pro-
ducers, heterogeneous goods, input-output linkages, and arbitrary production functions
and returns to scale, with any pattern of technological shocks). We can simply denote by
yt(s) the aggregate quantity of the consumption good in period t and state s, knowing
that yt(s) remains unchanged across points at the Pareto frontier.

The resource constraint for the consumption good is therefore

∑
h

cht(s) = yt(s).

Denote the consumption possibility set of the economy to be the set of feasible consump-

5Production is neoclassical and all producers set price equal to marginal cost. This implies that, holding
fixed consumption allocations in every other period and state, and focusing only on a single period and
state, it is not possible to make one agent better off without making someone worse off.
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tion allocations:

C =

{
c : ∑

h
cht(s) ≤ yt(s), for every t and s

}
.

3.2 Exact Characterization

First define the certainty-equivalent variation of a consumption process ch to be the func-
tion CE(ch) that solves

u(ch) = u(1 CE).

This can be rewritten as

E0

∞

∑
t=0

βtc
1− 1

η
ht = (1 − β)−1CE

1− 1
η ,

where E0 denotes the time-zero expectation. In words, CE(ch) is the amount of consump-
tion the agent needs in every date and state to be indifferent to the consumption stream
ch. Proposition 1 gives a simple characterization of misallocation in terms of certainty-
equivalents.

Proposition 2 (Misallocation in economies with common consumption good). For the base-
line closed-economy model, misallocation is

A =
CE(∑h c

0
h)

∑h CE(c0
h)

. (4)

In words, A is the certainty-equivalent of the aggregate consumption process relative
to the sum of the consumption equivalents of each households’ consumption process.

To derive Proposition 2, observe that consumption allocations on the Pareto frontier
must satisfy cht(s) = αhyt(s) for some household-specific αh ≥ 0 with ∑h αh = 1. Substi-
tuting this into (2) in Proposition 1, and manipulating yields

A = max
c∈C

min
h

{ũh(ch)} = max
α∈RH

αh≥0, ∑h αh=1

min
h

{αh ũh(y)} .

We know that the utility-maximizing problem above must satisfy αhũh(y) = αh′ ũh′(y).
Given the functional form of preferences, the consumption-equivalent variation function
is

ũh(ch) =

 ∑s π(s)∑∞
t=0 βtcht

1− 1
η

∑s π(s)∑∞
t=0 βtc0

ht(s)
1− 1

η


η

η−1

=
CE(ch)

CE(c0
h)

.
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Combining these equations and rearranging yields

αh =
CE(c0

h)

∑h′ CE(c0
h′)

.

Substituting this into A = αhũh(y) and using ∑h c
0
h = y, yields (4).

Equation (4) is similar to the definition of aggregate efficiency provided by Benabou
(2002), except here it is a result — given our general notion of misallocation — rather than
a definition. The fact that we have a general definition of misallocation makes it straight-
forward to extend (4) to more complex environments with labor-leisure, capital accumu-
lation, production distortions, and differences in consumption baskets across agents.

Contrast to the veil-of-ignorance. We contrast A to a popular measure of aggregate wel-
fare in the literature: the veil-of-ignorance social welfare function. Since all households in
the baseline model have common preferences, this measure is unambiguous to define.6

Whereas our measure is designed to ignore inequality, a primary motivation for the veil-
of-ignorance measure is to capture inequality-aversion using risk-preferences. Define the
veil-of-ignorance certainty-equivalent of a consumption allocation c by:

u(1CEVOI) = ∑
h∈H

1
H

u(ch).

In words, CEVOI is the certainty-equivalent of a population-weighted lottery of the con-
sumption allocation of each agent. We can calculate the ratio of the value of first-best,
according to CEVOI , relative to the value of the status-quo allocation:

AVOI =
maxc∈C CEVOI(c)

CEVOI(c0)
=

CE(∑h c
0
h)(

∑h
(
CE(c0

h)
) η−1

η

) η
η−1

, (5)

where the numerator uses the fact that the first-best allocation with this social welfare
function would split aggregate consumption uniformly across all agents. (See Appendix
A for a derivation). Comparing (4) to (5), we see that the veil-of-ignorance measure,
AVOI , uses risk-preferences to discipline inequality-aversion, whereas A does not feature

6See Eden (2020) for a detailed discussion of the veil-of-ignorance approach to quantifying social welfare,
and how it must be adapted in the presence of heterogeneous preferences.
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this effect.7,8

The simplest way to see the difference between A and AVOI is to consider a Pareto
efficient, but unequal, consumption allocation. Suppose that in the status-quo, each
household consumes a constant fraction, αh, of aggregate consumption. In this case,
CE(ch) = αhCE(y) and, using Proposition 2, it follows that misallocation is zero. How-
ever, as there is inequality in the status-quo (αh varies across households), AVOI > 1
(unless η = ∞ and households are risk-neutral).

3.3 Approximate Characterization

We now provide a second-order approximation of misallocation. This second-order ap-
proximation serves two purposes. First, it provides useful intuition about how parame-
ters affect misallocation. Second, and more importantly, it identifies some approximate
sufficient statistics that can be taken to the data without assuming complete knowledge
of the entire distribution of consumption allocations and productivity shifters.

To derive this approximation, we introduce the concept of an equilibrium with wedges.
We decentralize the status-quo allocation using household-specific state- and date-contingent
consumption taxes. Denote the wedge, which is an implicit tax, on the consumption of
household h at time t in state s by µht(s).9 The intertemporal budget constraint for house-
hold h, in the decentralization with wedges, is

∑
s

∑
t

qt(s)µht(s)pt(s)cht(s) ≤ Ih,

where qt(s) is the price of an Arrow security, pt(s) is the price of the consumption good h
7In other words, the veil-of-ignorance measures sets the Atkinson (1970) parameter for inequality-

aversion equal to the coefficient of relative risk aversion.
8In this example, the veil of ignorance can also be thought of as a utilitarian social welfare function (sum

of utilities) with a particular cardinalization of the utility function. However, with other cardinalizations of
the same preferences, the sum of utilities will have different implications. This is because “the” utilitarian
welfare function is not well-defined as it depends on how each utility function is cardinalized. For exam-
ple, if instead of using the functional-form of u, defined above, we cardinalize the same preferences using

the monotone nonlinear transformation (u(ch)(1 − 1/η))
η

η−1 =

(
E0 ∑∞

t=0 βtc
1− 1

η

ht

) η
η−1

, then the utilitarian

social welfare function would have zero inequality aversion. We note that our measure of misallocation, A,
is invariant to monotone transformations of utility.

9Because we assume that production is statically efficient, there are no production wedges. Propositions
1 through 4 still apply if there are production wedges that are held constant when completing markets.
This is because households insuring each other would have no effect on the production of the aggregate
consumption good in any date or state. With production wedges (due to, e.g., firms’ borrowing constraints,
market power, sticky prices, etc.), there is a different notion of misallocation where we complete markets
and remove production wedges. Proposition 1 applies for this notion of misallocation, but Proposition 2
and Proposition 4 would need to be modified.
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in state s at time t not including the wedge, and Ih is initial wealth.
We now define general equilibrium with wedges.

Definition 3 (Equilibrium with Wedges). A general equilibrium with wedges is the col-
lection of prices and quantities such that: (1) each household chooses consumption quan-
tities to maximize utility taking prices, consumption tax wedges, and wealth as given; (2)
every producer chooses inputs to minimize costs, taking input prices as given, and sets
its price equal to marginal cost; (3) resource constraints are satisfied.

Denote household h’s share of consumption in state s and date t in the status-quo
allocation by

ωht(s) =
c0

ht(s)

∑h′ c0
h′t(s)

.

The following proposition shows that the status-quo allocation, c0, can be decentralized
using some pattern of household-state-date-specific consumption wedges.

Proposition 3 (Decentralization with Wedges). Consider some equilibrium status-quo alloca-
tion c0. Then, setting

log µht(s) = − 1
η
[log ωht(s)− log ωh0(s)] (6)

implies that c0 is a general equilibrium with those wedges. This equilibrium is supported by some
lump-sum transfers across households.

We do not need to specify the lump-sum transfers explicitly. For our purposes, all
that matters is that there exist an equilibrium with the wedges in (16), with appropriate
transfers, that can support c0 as an equilibrium allocation.10

Denote deviations of aggregate output from some constant values by ∆ log y. That is,
for time t and state s, define

∆ log yt(s) = log
yt(s)

y
,

where y is some constant (over time and states) level of output. Since production is in-
variant to changes in wedges ∆ log y is also invariant to changes in wedges.

The following proposition approximates misallocation losses in terms of Harberger
deadweight loss triangles.

10The wedges in (16) are not the only ones that can decentralize c0. For example, if wedges µht(s) are all
raised by the same proportion for a given household h in every t and s, this can still decentralize c0, but
the lump-sum transfers that support the status-quo allocations would change. That is, Proposition 3 is a
particular normalization of wedges that can decentralize the status-quo.
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Proposition 4 (Approximate Misallocation for Baseline). Consider the special case where
there is a common consumption good in every period and state. Misallocation is approximately
equal to

log A(c0, C) ≈ 1
2

1
η

E0

[
∞

∑
t=0

r
(1 + r)t+1 ∑

h
ωh0 (log ωht(s)− log ωh0) (log ωht(s)− log ω̄h)

]
,

where r is the risk-free rate in the first period and log ω̄h = rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s)|h
]

is the conditional expected discounted consumption share of household h over states of nature s.
The approximation error is order log µ3 and log µ2∆ log y.

Proposition 4 is an application of Proposition 8 from Baqaee and Burstein (2025b) to
this environment. The intuition for the expression above is exactly the same as the tradi-
tional deadweight-loss (Harberger) triangle logic. The height of the triangle is measured
by the wedge, log µht(s) = − 1

η [log ωht(s)− log ωh0] from (6). The smaller is the EIS, the
larger is the implied wedge necessary to reach the same distorted allocation. The base of
the triangle is the gap between household h’s share of consumption in state s and time
t, ωht(s), and its expected share of consumption in net-present value terms ω̄h. The area
of the triangle divides the product of the base and the height by two. We then sum up
deadweight loss triangles over households using net-present-value expenditure weights.

It is important to stress that in our context there is no single “first-best” allocation. That
is, there is no implication that the first-best allocation is the one that sets each consumption
share equal to its expected net present value in the status-quo. In the absence of wedges,
there are many different allocations that are all Pareto dominant to the status-quo, and
our measure takes no stance on which one is socially desirable. Instead, this allocation is
used to form the Harberger triangles since it is the one chosen by the fictional agent in
Proposition 1.

We apply these results in a calibrated version of the Bewley (1972) model.

3.4 Quantitative Example

We measure misallocation from market incompleteness using off-the-shelf calibration of
Bewley (1972). We use this quantitative example to show how the costs of market in-
completeness change as a function of parameters like idiosyncratic risk, borrowing con-
straints, and public debt. We also use this example to test the performance of our second-
order approximation and its finite sample properties.
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Model. There is a unit mass of households, indexed by h ∈ [0, 1], with preferences as in
(3) subject to a per-period budget constraint

cht + aht+1 = (1 − τ)zht + (1 + rt)aht,

where aht is the quantity of a risk free bond held by h, zht is risky labor productivity, and
τ is the tax rate. Each household faces a borrowing constraint

a ≥ −a.

Productivity evolves according to

log zht = ρ log zht−1 + σϵht,

where ϵht is an idiosyncratic Gaussian disturbance. The government has issued B risk
free bonds and runs a balanced budget every period using labor income taxes, so that

rB = τ.

Market clearing condition for goods and bonds is

∫ 1

0
chtdh =

∫ 1

0
zhtdh = y = 1, and

∫ 1

0
ahtdh = B.

The consumption possibility set is

C =

{
c :
∫

cht(s)dh ≤ 1, for every t and s
}

.

Parameterization. We use a quarterly calibration. We set quarterly persistence of log
income to be ρ = 0.975 with standard deviation 0.16 to match estimates of the quarterly
persistence and the cross-sectional standard deviation of the persistent component of log
income in the United States.11 We set the borrowing limit to be −5, so households can
borrow at most 5 times their quarterly income. We set the annual risk-free r = 5% and the
EIS η = 0.5. Finally, we set B = 5.6 — so that total bonds outstanding relative to quarterly
output is 560% (or 140% of annual GDP).

11See Rognlie (2024). We target a cross-sectional standard deviation of log income equal to 0.7, which
means that the standard deviation to the innovations must be σ = 0.7 ×

√
1 − 0.9752.
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Figure 1: Losses as a function of idiosyncratic income risk. Dashed line is benchmark.
Exact and approximate are visually identical.

Results. Figure 1 plots the extent of misallocation, calculated using Proposition 2, and
compares it to the second-order approximation from Proposition 4, using the steady-state
invariant distribution for the status-quo allocation. The approximation performs well
and, as expected, becomes exact as σ → 0. The benchmark values are indicated by the
dashed black line, where misallocation is log A ≈ 0.20. This means that if agents perfectly
insure each other and everyone is kept indifferent to their status-quo allocation, then there
is 20 log points (or 1− exp(−0.20) ≈ 18% percentage points) of output left over to be split
across agents as desired.

We also compare the status-quo allocation to the first-best allocation under the veil-of-
ignorance criteria, using equation (5). The veil-of-ignorance measure, which penalizes in-
equality across agents analogously to uncertainty for each agent, assigns more than dou-
ble the losses to the status-quo. That is, behind the veil, households would be prepared
to give up 51 log points of aggregate consumption if they could equalize consumption
across dates, states, and the cross-sectional population.

Figure 2 plots the quality of the second-order approximation against the exact misal-
location losses as the sample length used in the approximation increases. The second-
order approximation stabilizes after about 100 quarters (25 years), but suffers from some
small sample bias when the number of quarters is significantly shorter than that. With a
truncated sample, the second-order approximation underestimates the extent of misallo-
cation because the Harberger triangles in the first few periods are, by construction, equal
to zero.12

Figure 3 plots misallocation, relative to the status-quo in the invariant distribution,

12The second-order approximation is much less sensitive to the number of households in the sample.
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Figure 3: Misallocation as a function of parameters (dashed line is benchmark).

as a function of the aggregate supply of bonds and the borrowing limit. In both cases,
misallocation falls mildly as the borrowing limit is increased and as the supply of bonds
rises. The approximation continues to perform well. It is important to note that, as we
change parameters, the invariant distribution changes — hence, in plotting these curves,
we are not holding fixed the status-quo allocation. So, for example, if log A is 0.20 in
the baseline, but log A = 0.15 when aggregate bond supply is doubled, this means that
the distance to the efficient frontier from the corresponding status-quo is 0.20 and 0.15,
but this does not imply that misallocation falls by 0.20 − 0.15 ≈ 0.05 when bond supply
is doubled. To answer this question (how much misallocation changes when we double
bond supply), using Definition 1, we would have to specify the distributive tools available
to society, which would give rise to a consumption possibility frontier C(B), hold fixed
the status-quo allocation at B = 5.6, and solve the problem in Proposition 1.
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4 Extensions with Leisure and Capital

In this section, we quantify misallocation allowing for endogenous labor-leisure choice
and capital accumulation.

4.1 Extension with Labor-Leisure Choice

Suppose households have preferences over consumption goods and leisure:

u(ch, lh) = E0

∞

∑
t=0

βtv(cht(s), lht(s)).

Each household has a unit endowment of time, which they devote either to leisure, lht(s),
or to work, 1− lht(s). For simplicity, assume production converts labor into consumption
good linearly. Hence, the resource constraint for consumption at date t in state s is

∑
h

cht(s) = yt(s) = ∑
h

zht(s) (1 − lht(s)) , (7)

where zht(s) is the idiosyncratic productivity of household h in date t and state s. In the
baseline model, leisure lht(s) is normalized to be zero.

The consumption possibility set C(z) now consists of all consumption and leisure pro-
cesses that are consistent with the resource constraint above. Elements of C(z) are con-
sumption and leisure processes for each household, where each agent’s leisure process
must be in the unit interval, lht(s) ∈ [0, 1], and consumption processes must satisfy (7).

We use the same definition of misallocation as in Definition 1. That is, by how much
can we shrink the Pareto efficient consumption possibility set and still keep every agent
at least indifferent to the status-quo. The scalar A measures how much of every good,
including leisure, in every state and date is left over after every agent has been made
indifferent. Equivalently, in this model, this is a measure of the amount of the time en-
dowment that is being wasted.13

We modify the definition of consumption-equivalents, in Definition 2, to allow for
leisure. Namely, define ũh(ch, lh) implicity by the equation

u(c0
h, l0h) = E0

∞

∑
t=0

βtv
(

cht(s)
ũ

,
lht(s)

ũ

)
. (8)

13Reducing leisure here does not mean we increase work — a proportional reduction in consumption
and leisure is equivalent to reducing every household’s time endowment by some fraction.
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With this definition of ũh, Proposition 1 applies and can be used to calculate misallocation
without change.

We provide some examples of ũh for popular functional forms below.

Example 1 (Homothetic preferences). Suppose the intratemporal utility function, v, is

v(ch, lh) =
1

1 − 1/η

[
cγ

h l1−γ
h

]1− 1
η . (9)

Then ũh is

ũh(ch, lh) =

[
u(ch, lh)
u(c0

h, l0h)

] 1
1−1/η

.

Example 2 (MaCurdy preferences). A popular class of intratemporal preferences, due to
MaCurdy (1981), is

v(ch, lh) =
1

1 − 1/η
c

1− 1
η

h + ϕ0l
1− 1

ϕ

h . (10)

In this case, ũ(ch, lh) is implicitly defined by the equation

ũh =

(
1
u0

h
E0

[
∞

∑
t=0

βt

(
cht(s)

1− 1
η

1 − 1/η
+ ũ

1
ϕ−

1
η

h ϕ0lht(s)
1− 1

ϕ

)]) η
η−1

.

Comparison with Benabou (2002) measure of aggregate efficiency. As mentioned ear-
lier, our definition of efficiency is different to a frequently used alternative in the literature,
like Benabou (2002), Floden (2001) and Boar and Midrigan (2022). To compare two allo-
cations, the literature following Benabou (2002) defines the consumption-equivalent of a
consumption process ch and a leisure process lh to be the function CE(ch, lh) that solves

u(1CE,1l̄) = u(ch, lh),

where l̄ is some fixed level of leisure (e.g. average leisure). The efficiency of an allocation
is defined by ∑h CE(ch, lh).

One way to see the difference between A and this measure is to note that this mea-
sure assigns different values to different allocations on the Pareto frontier. Suppose that
preferences take the standard functional form in Example 1. In this case, this measure of
efficiency can be written as

∑
h

CE(ch, lh) = constant × ∑
h
(u(ch, lh))

η
(η−1)γ ,
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where the constant depends on β, η, γ, and l̄. Consider the simple case where labor
productivity is equal to one in every date and state for every agent. Then we can show
that for every allocation (c, l) on the Pareto frontier, we can write

∑
h

CE(ch, lh) = constant × ∑
h

α
1
γ

h , (11)

for some numbers on the unit simplex, {α ≥ 0 : ∑h αh = 1}. (See Appendix A for
a derivation). In this expression, α are coordinates of the Pareto frontier — i.e. they
can be interpreted like Pareto weights — the higher is αh for household h, the higher
is the utility of that agent. Clearly, unless γ = 1, and there is no labor-leisure choice,
(11) assigns different values to different points on the Pareto-frontier. Surprisingly, this
measure assigns (weakly) higher values to more unequal Pareto weights since γ ≤ 1.
Indeed, by continuity, this shows that there are Pareto-inefficient allocations that receive
a higher value according to this measure than alternative Pareto efficient allocations with
less inequality. Therefore, once we have labor-leisure choice, this measure is not neutral
with respect to pure redistributions (and indeed, prefers inequality). In contrast, our
measure detects zero misallocation (i.e. A = 1) for any status-quo on the Pareto-efficient
frontier.

Quantitative example with labor-leisure choice. Assume preferences take the MaCurdy
(1981) form in (10). We calibrate the EIS and the Frisch elasticity of labor supply to equal
η = ϕ = 0.5, and set ϕ0 so that leisure is, on average, equal to 40% of the time endowment.
We re-calibrate the discount factor and the standard deviation of the productivity shocks
to hit the same interest rate r = 0.05 and the cross-sectional variance of consumption as in
the baseline calibration above. The remaining parameters the same as in the calibration
in Section 3.4.

The losses are shown in Figure 4 as a function of idiosyncratic risk σ calculated using
Proposition 1. Even as σ goes to zero, the losses are non-zero since there is a tax on
labor. However, this effect is small because the baseline tax rate is small. Misallocation
for the baseline parameters is 21 log points, which is very similar to the baseline model.
Furthermore, the second-order approximation in Proposition 4 continues to perform very
well, even though it is derived for a model without labor-leisure choice.
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Figure 4: Losses with labor-leisure choice as a function of idiosyncratic income risk.
Dashed line is σ in original calibration.

4.2 Extension with Capital Accumulation

We now consider an extension with capital accumulation along the lines of Aiyagari
(1994). For simplicity, we assume labor is inelastically supplied. Aggregate output in
each period and state is

yt(s) = zt(s)kt(s)α, (12)

where we imposed the requirement that the aggregate endowment of labor is equal to
one. Capital accumulation satisfies

kt+1(s) = (1 − δ)kt(s) + xt(s), (13)

where xt(s) is investment. Denote the initial capital stock by k0. The aggregate resource
constraint for output is

yt(s) = ct(s) + xt(s) = ∑
h∈H

cht(s) + xt(s). (14)

Proposition 1 continues to hold with capital accumulation. Specifically, this means

A = max
c

(
u(ch)

u(c0
h)

) η
η−1

,

subject to (12), (13), (14), and u(ch)

u(c0
h)

=
u(ch′ )

u(c0
h′ )

for every h′ ∈ H and some initial capital stock

k0. This implies the following.
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Proposition 5 (Misallocation with capital accumulation). Let c∗t (s) be the optimal (aggregate)
consumption choice in period t and state s of a representative agent in the neoclassical growth
model with initial capital stock k0.14 Then

A(c0, C) = CE({c∗t (s)}t,s)

∑h CE(c0
h)

. (15)

That is, A is equal to the ratio of the certainty-equivalent of the aggregate consump-
tion process from a neoclassical growth model given the initial aggregate capital stock k0

relative to the sum of the certainty-equivalent of each agent in the status-quo. Compared
to Proposition 2, this means calculating misallocation now has one more step: solving
for the transition dynamics in a standard neoclassical growth model given initial capital
stock k0.

Quantitative example with capital accumulation. Below, we describe the equilibrium
that determines the status-quo. Household preferences are the same as before, but the
per-period budget constraint is now

cht + xht = zht + Rtkht,

where xht is investment by household h and Rt is the rental price of capital. Each house-
hold faces a borrowing constraint, so kht ≥ 0. The labor income process is the same as
before. Each household’s capital stock follows

kht+1 = (1 − δ)kht + xht

The aggregate resource constraints are as in (12)-(14). Aggregate output is produced
by a perfectly competitive representative firm that hires labor and capital on competitive
spot markets. The rental rate of capital clears the capital market:

∫ 1
0 khtdh = kt.

We calibrate capital’s share of GDP to be α = 0.35, the depreciation rate δ to match a
capital to (quarterly) output ratio of 14, and the discount factor β to match a steady-state
annual interest rate of r = 0.05. We set the standard deviation of idiosyncratic income risk,
σ, to match the same cross-sectional variance of consumption as in the baseline model
without capital.

14In particular, c∗t in state s solves (c∗t )
− 1

η = βEt

[
(αzt+1kα−1

t+1 + 1 − δ)
(
c∗t+1

)− 1
η

]
and c∗t = ztkα

t + (1 −

δ)kt − kt+1, given some initial k0 and the standard transversality condition. The vector {c∗t (s)}t,s is the
stream of aggregate consumption across states and dates.

22



We calculate distance to the frontier, ∆ log A, using Proposition 5. The results are
plotted in Figure 5 as a function of idiosyncratic risk. Misallocation at the benchmark
values is 19 log points, similar to the calibration of the baseline model without capital.
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Figure 5: Losses as a function of idiosyncratic income risk. Dashed line is original calibra-
tion.

As mentioned above, due to the precautionary motive, households overinvest in cap-
ital relative to first-best allocations. To quantify the importance of overinvestment for
misallocation, we compare the benchmark distance to the frontier with one where we
impose that the capital stock remains constant. That is, we use the consumption possibil-
ity set that keeps the aggregate capital stock constant and equal to its status-quo value in
Definition 1. This means we can use we use equation (4) rather than (15). As expected, the
distance to the frontier holding the capital stock constant is smaller than the distance to
the frontier allowing the capital stock to adjust — and the gap grows as idiosyncratic risk,
and the strength of the precautionary motive, rise. At the benchmark values, allowing for
the aggregate capital stock to adjust raises the distance from the efficient frontier from 17
log points (holding capital fixed) to 19 log points. For completeness, Figure 5 also reports
the second-order approximation in Proposition 4, which continues to perform very well
as an approximation to the case where the aggregate capital stock is held constant.

5 Incompleteness of International Markets

In this section, we quantify misallocation allowing for international trade in goods and
assets between countries. To do so, we augment the baseline model of Section 3 with
multiple household types with different consumption baskets (i.e. home bias).
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5.1 Environment with Heterogeneous Consumption Baskets

To calculate misallocation from financial market incompleteness, we must define the
Pareto frontier. In the baseline closed economy model in Section 3, the description of
the Pareto frontier is very simple because all agents consume the same good and the ag-
gregate quantity of the final good is unaffected by financial market incompleteness. When
we relax this assumption, defining the Pareto frontier requires spelling out the production
structure in more detail.

Preferences. Household h have the same intertemporal preferences as before:

uh(ch) =
1

1 − 1/η ∑
s

π(s)
∞

∑
t=0

βtcht(s)
1− 1

η .

Here, cht(s) denotes consumption of household h at time t in state s. The crucial differ-
ence, relative to the baseline model in Section 3, is that each household h can consume a
potentially different consumption good. This allows us to incorporate non-traded goods
into the model (e.g. households in Germany consume a different bundle than households
in China).

Technologies. In every period, t, of every state s, there is a set F of primary factor en-
dowments and N of goods. The factors are inelastically supplied and owned by house-
holds, and used by producers in the same period (i.e. labor from t cannot be used by
producers in t + 1). Producer i ∈ N has a CES production function that uses intermedi-
ate inputs and primary factor endowments with elasticity of substitution θi. Hence, the
production function of i is

yit(s) = zit(s)

(
∑
j∈N

αij
(
yijt(s)

) θi−1
θi + ∑

f∈F
αi f
(
li f t(s)

) θi−1
θi

) θi
θi−1

,

where zi is a Hicks-neutral productivity shifter, and yijt(s) and li f t(s) are intermediate
input j and factor input f . The scalars αij and αi f are share parameters that affect expen-
ditures shares across inputs for each i.

Note that this structure is general enough to accommodate any pattern of nested-CES
producers. This model also accommodates any Armington-style model of trade, where
productivity shifters, zit(s), for specialized intermediaries of imports and exports repre-
sent iceberg costs of trade. Without loss of generality, we treat the consumption bundle
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of each household cht(s) as-if it is produced by one of the goods producers and order the
consumption goods first among the commodities in N.15

Resource constraints. The resource constraints of the economy are as follows: con-
sumption of good h equals its production,

yht(s) = cht(s), (h ∈ H)

use of intermediate input i equals its production,

∑
j∈N

yjit(s) = yit(s), (i ∈ N, i /∈ H)

use of factor f equals its endowment

∑
j∈N

lj f t(s) = z f t(s), ( f ∈ F).

Given these technologies and resource constraints, denote the dynamic consump-
tion possibility set of the economy by C(z), where z is the vector of all state-contingent
technology processes. That is, each element of C(z) is a vector of state-contingent con-
sumptions streams for every household. By the second welfare theorem, C(z) is the set
of perfectly competitive equilibria, with complete markets, given unrestricted lump-sum
transfers. The model in Section 3 is the special case of this model where all households
consume the same good.16

5.2 Approximate Characterization

Proposition 1 applies to this economy, but computing misallocation this way requires
fully specifying the Pareto frontier, including, for example, the productivity processes.
Instead, we provide a (second-order) approximation for misallocation that does not re-
quire as much information to implement. We do this by using wedges to decentralize the
status-quo allocation, as in Section 3.

15For more details, see the discussion of the “standard-form” representation of nested-CES economies in
Baqaee and Farhi (2019).

16We also assume throughout that no country is in autarky. Or equivalently, if some country is in au-
tarky, then it is excluded from the analysis. This is because if a country is in autarky, then that country is
unaffected by incompleteness of financial markets since there is no way to transfer resources to that agent
or insure them against fluctuations. Hence, by definition A = 1 if we include a country in autarky in the
analysis.
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Denote the wedge, which is an implicit tax, on the consumption of household h at
time t in state s by µht(s). The intertemporal budget constraint for household h, in the
decentralization with wedges, is

∑
s

∑
t

qt(s)µht(s)pht(s)cht(s) ≤ Ih,

where qt(s) is the price of an Arrow security, pht(s) is the price of the consumption good
h in state s at time t not including the wedge, and Ih is initial wealth (including factor
endowments and revenues from consumption tax wedges).

We now extend the definition of general equilibrium with wedges. Since our focus is
on misallocation from incomplete markets for households, we abstract from other possi-
ble distortions and assume that firms set prices equal to marginal cost.

Definition 4 (Equilibrium with Wedges). A general equilibrium with wedges is the col-
lection of prices and quantities such that: (1) the price of each good i equals its marginal
cost of production; (2) each producer takes prices as given and chooses quantities to max-
imize profits; (3) each household chooses consumption quantities to maximize utility tak-
ing prices, consumption tax wedges, and income as given; (4) household h earns income
from primary factors and tax revenues; (5) all resource constraints are satisfied.

The following proposition extends Proposition 3 to a setting with heterogeneous pref-
erences. It shows that any feasible consumption allocation that is the equilibrium of a
model with incomplete financial markets (and no other distortions) can be decentralized
using only household-state-date-specific consumption taxes.17

Proposition 6 (Decentralization with Wedges). Consider the status-quo consumption alloca-
tion c0. Assume that for each period t and state s, the consumption vector {c0

ht(s)}h∈H is statically
efficient. Then, for any h̄ ∈ H, setting

log µht(s) = − 1
η

[
log

ωht(s)/ωh0

ωh̄t(s)/ωh̄0

]
+

1 − η

η

[
log

pht(s)/ph0

ph̄t(s)/ph̄0

]
(16)

17The wedges in Proposition 6 are distinct from the wedges in Berger et al. (2023). They consider pref-
erence shifters that, in a representative agent economy, replicate the path of aggregate outcomes (e.g. ag-
gregate consumption, hours, etc.) from a heterogeneous agent New Keynesian model. They show that
deviations from perfect risk-sharing map onto discount factor shocks in the representative agent model.
They then consider the reduction in output volatility in the absence of these as-if discount factor shocks.
In contrast, the wedges in Proposition 6 replicate a microeconomic, rather than just aggregate, allocation in
a heterogeneous agent general equilibrium with wedges. We use these wedges to construct a deadweight
loss triangle formula for incomplete market models.
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implies that c0 is a general equilibrium with those wedges, where ωht(s) is the status-quo expendi-
tures of consumer h in period t and state s as a share of total household spending in that period and
state, and pht(s) is the status-quo consumption price index for this household.18 The equilibrium
allocation is supported by some lump-sum transfers across households.

By construction, for some household h̄, the wedge µh̄t(s) equals 1 for every t and s.
However, this choice of h̄ has no bearing any of the results, since only relative wedges
matter for equilibrium allocations (see proofs in the appendix). Moreover, we do not
need to specify the lump-sum transfers explicitly. For our purposes, all that matters is
that there exist an equilibrium with the wedges in (16), and appropriate transfers, that
can support c0 as an equilibrium allocation.

If allocations are dynamically efficient, so that wedges are all equal to one, then ac-
cording to (16), households whose consumption prices grow relatively more quickly (i.e.
real exchange appreciation) experience relatively faster growth in consumption expen-
ditures if η < 1. Setting wedges equal to one and rearranging yields the Backus and
Smith (1993) condition for efficient risk-sharing. For this reason, we refer to log µht(s) as
Backus-Smith wedges.

(2) If η = 1, then once again, the efficient allocation features constant consumption
expenditure shares over time, even though households consume different goods. This is
related to the observation by Cole and Obstfeld (1991) that an economy with η = 1 and
constant expenditure shares in equilibrium delivers efficient risk-sharing even if there is
financial autarky.

Given these wedges, we can now generalize Proposition 4 to this environment. To do
so, denote the deviations of productivity shifters from some constant values by ∆ log z.
That is, for producer i at time t in state s,

∆ log zit(s) = log
zit(s)

zi
,

where zi is some constant (over time and states) level of productivity for producer i.
The following proposition approximates misallocation losses in terms of Harberger

deadweight loss triangles.

Proposition 7 (Approximate Misallocation for International Model). Misallocation compar-

18More precisely, ωht(s) = (∑i∈N pit(s)c0
iht(s))/(∑h′∈H ∑i′∈N pi′t(s)c0

i′h′t(s)) where i indexes different
goods, with status-quo price pit(s), and c0

iht(s) is the consumption of good i by household h in date t and
state s in the status-quo.
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ing the status-quo allocation c0 to the Pareto-frontier C(z) is approximately

log A ≈ 1
2

E0

[
∞

∑
t=0

r
(1 + r)t+1 ∑

h∈H
ωh log µht(s) ∑

h′∈H
Mhh′ [log µh′t(s)− log µ̄h]

]
,

where log µht(s) is given by Proposition 6, log µ̄h = E0[∑∞
t=0

r
(1+r)t+1 log µht(s)|h] is the ex-

pected discounted consumption wedge for household h, ωh is the expenditure share of household h
at any date or state, r is the risk-free rate at any date or state, and the scalar Mhh′ depends only on
the static input-output matrix and elasticities of substitution (including η). The approximation
error is order logµ3 and logµ2∆ log z.

The explicit formula for the H × H matrix M in terms of the input-output table and
elasticities of substitution is given in the appendix. The key is that the matrix M does not
depend on either the date or the state.

Proposition 7 is a sufficient statistics formula: misallocation can be approximated con-
ditional on knowledge of the (static) input-output table at some date, elasticities of substi-
tution (include η), the risk-free rate r at one point in time, and wedges, log µht(s), which
are recoverable from Proposition 6. Importantly, one does not need know the process
driving productivity shocks ∆ log z or the income process (which also depend on asset
portfolios and returns, etc.) for each country.

To build some intuition for Proposition 7, consider the following simple example.

Example 3 (Symmetric country example). Consider two symmetric countries, h ∈ {1, 2},
and suppose that each country produces one good using a linear technology from the
local factor endowment (i.e. there is one industry in each country and no intermediate
inputs). Let α denote the import share in both countries in the first date in status-quo and
let θ denote the elasticity of substitution between domestic and foreign goods.

Apply (16) and set log wedges for country 2 to zero (i.e. h̄ = 2). Then, apply Proposi-
tion 7 and rearrange to get

log A ≈ 1
2

 α(1 − α)(
1
η − 1

θ

)
4α (1 − α) + 1

θ

 ∞

∑
t=0

r
(1 + r)t+1 E0 [log µ1t(s) (log µ1t(s)− log µ̄1)] .

This expression illustrates several important lessons. First, holding the Backus-Smith
wedges µ constant, misallocation goes to zero if either the import share of consumption,
α, approaches zero or one. Intuitively, if the two countries are consuming completely
unrelated goods, then there is no insurance possible between them. Second, as the Arm-
ington elasticity, θ, rises to infinity misallocation rises because there is more scope for
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international risk sharing when foreign and domestic goods are more substitutable.
Finally, holding the Backus-Smith wedges constant, misallocation tends to zero as the

EIS, η, tends to zero. This is because consumption choices do not respond to wedges
when the EIS is close to zero. However, the Backus-Smith wedges in (16) are themselves
functions of η (given data on consumption expenditures and real exchange rates). In
particular, these wedges explode as η goes to zero. Intuitively, since consumption choices
are insensitive to wedges when η is low, we require very large consumption wedges to
justify deviations from perfect risk-sharing. This second effect always dominates (because
it is order 1/η2) and so that misallocation is larger for lower values of η holding fixed the
data. These three lessons are all borne out in our empirical application in Section 6.2.

5.3 Quantitative Example

We provide a quantitative example to assess the accuracy of the second-order approxima-
tion in Proposition 7. We simulate an Armington model of trade with 15 heterogeneous
countries and homogeneous consumers within each country. Each country produces a
single good, the elasticity of substitution between domestic and foreign goods is 3, and
the EIS is 0.5. We randomize the country sizes and the input-output matrices. We draw
productivity shocks and Backus-Smith wedges from a lognormal distribution.

We vary the standard deviation of the productivity and wedge process in Figure 6 and
plot the exact gains from completing financial markets, computed using Proposition 1,
and the approximate gains, computed using Proposition 7. To estimate the time-zero ex-
pectations in Proposition 7, we simulate the model for 100 periods and treat the observed
realizations as one sample path from the distribution generating the data. Since we only
have one realization of the sample path, we estimate the expectation using this single
observation. Because we do not observe all terms in the infinite sums for present value
calculations, we treat unobserved terms as equal to an average of the observations in the
last five years of the data.

Even with very large shocks, the second-order approximation performs very well. No-
tably, to compute the second-order approximation, we do not need to know the stochastic
process driving either the wedges or the productivity shocks.

6 Empirical Applications

We provide two empirical applications. The first application applies the closed-economy
result in Proposition 4 to US household consumption panel data from the Panel Study
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Figure 6: Performance of second-order approximation in Proposition 7. The x-axis is the
standard deviation of log productivity and Backus-Smith wedge shocks.

of Income Dynamics (PSID). The second application applies the open-economy result in
Proposition 7 to international macroeconomic data. Our first application measures mis-
allocation due to incompleteness of financial markets among households in the PSID,
whereas the second application measures misallocation due to incompleteness of inter-
national financial markets, where we abstract from micro-level heterogeneity and treat
each country as a different representative agent.

Since we use our sufficient statistics approximations, we can calculate misallocation
using only the data on expenditures and prices as well as estimates of elasticities of sub-
stitution — we do not specify the details of financial market imperfections or the deter-
minants of the Pareto frontier like the technology/income processes.

6.1 Misallocation from Domestic Financial Market Incompleteness

In this application, we quantify misallocation from the lack of complete domestic insur-
ance markets in the US. We study how much consumption (in every date and state) is
left over if domestic insurance markets work perfectly and every household is kept indif-
ferent relative to their status-quo allocation. The larger is this number, the greater is the
extent of misallocation from incomplete risk-sharing in the status-quo. To avoid confu-
sion, keep in mind that the status-quo allocation is the entire state- and date-contingent
equilibrium consumption process for each household starting in the first period, rather
than consumption in the first period.

Approach. We use Proposition 4 to examine the extent of misallocation. In particular,
we assume the data arise from an economy that meets the assumptions laid out in Section
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3 — that is, every household has the same static consumption aggregator, and produc-
tion is efficient in a static sense, but consumption allocations may be Pareto inefficient
over time or across different states of nature. In particular, this means that we abstract
from labor-leisure choice at the individual level, and capital accumulation at the aggre-
gate level. Nevertheless, our quantitative results in Section 4 give some assurance that
abstracting from these two margins is quantitatively innocuous for log A and that our
approximation formula continues to perform well even if these ingredients are added to
the model.

Description of data. We use the PSID, which is a longitudinal panel survey of American
households. We use a balanced panel of households from 1999 to 2021 with 2, 096 house-
holds. We use household consumption expenditures across six consumption categories
collected once every two years. These categories are food (at home and away), child care,
healthcare, education, transportation, and housing. We leave out other expenditure cat-
egories (like clothing and electronics) which are not collected in every wave. Housing
expenditures do not measure owner-occupied rental value for home owners, so we use
the methodology in Baqaee et al. (2024) to impute owner-occupied housing costs.19

Mapping data to terms in Proposition 4. To apply Proposition 4, we set the EIS η =

0.5 and the risk-free rate r = 0.05. We use household h’s share of total consumption
expenditures in 1999 to calibrate ωh.20 We perform sensitivity analysis with respect to
these choices when we present our results.

To estimate the expected discounted consumption share of household h, log ω̄h =

rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s′)|h
]
, we run a regression of household h’s consumption

share in period t on its date-zero consumption share (the first year of the sample, 1999),
and a vector of household-level covariates.21

log ωht = γt log(ωh0) +ψtXh0 + ϵht. (17)

The estimated regression equation is the best linear predictor of household h’s consump-
tion share at t conditional on observables at date zero (1999). We use this linear predictor

19Briefly, we regress rent on observables for non-owners, and then use the estimates to predict rents for
home-owners.

20We experimented with using contemporaneous shares ωht every period instead of freezing them in
1999 and the results are very similar.

21The covariates are household wealth without home equity, state of residence, household size, home
ownership status (0 or 1), household head’s age, race, ethnicity, and college degree status, business assets
of the head and spouse, household head’s labor income, and spouse’s labor income.
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in place of the conditional expectation in the formulas (i.e. in place of the best nonlinear
predictor). Hence, to calculate log ω̄h = rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s′)|h
]

we predict
household h’s consumption share at each horizon t and sum them up discounted using
r. Because we do not observe all terms in the infinite sums for present value calculations,
we treat unobserved terms as equal to the last observed value. As shown in Figure 2, this
imputation does well in small sample settings.

Results. Figure 7 plots estimated misallocation losses in the PSID as a function of the
annual interest rate. Our benchmark interest rate of 5% implies that misallocation is 21
log points (roughly 20%). That is, the gains from eliminating idiosyncratic consumption
volatility are around 20% of consumption in every period and state. We can contrast
this with the gains from eliminating aggregate volatility for a representative agent, which
Lucas (1987) famously estimated to be three orders of magnitude smaller (0.05%).

The estimated gains in the PSID are in the same ballpark as those from the calibrated
Bewley (1972) model in Section 3.4. Estimated misallocation decreases as the risk-free
rate, or degree of impatience, rises. This is because deadweight loss triangles in the future
are more heavily discounted. In the limit, as r → ∞, households are infinitely impatient,
there is no possibility to share risk, and misallocation is zero.
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Figure 7: Estimated misallocation in PSID. Dashed line is benchmark.

Table 1 shows how estimates of misallocation change as we drop covariates from the
regression in (17). As the regression becomes less informative, estimated misallocation
rises. Intuitively, this is because with a less informative regression, we attribute some sys-
tematic differences between households to lack of risk-sharing rather than to differences
in observable household characteristics. In other words, once the regression model stops
controlling for certain variables, previously explained variation in consumption shares
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now appears as evidence of incomplete insurance, artificially inflating the measured mis-
allocation. This upward bias in estimated misallocation can be non-negligible: including
no additional controls besides initial consumption, causes the estimate to rise from 0.21
to 0.27.

Eliminated variable Estimated misallocation

None (Baseline) 0.214
Spouse labor income 0.223
Household head labor income 0.223
Business assets (household & spouse) 0.231
Household head college degree 0.239
Household head race and ethnicity 0.244
Household head age 0.249
Renter status 0.252
Household size 0.258
State of residence 0.269
Wealth 0.266

Table 1: Estimated misallocation under the baseline calibration with annual interest rate
r = 0.05. The top row includes all covariates; each subsequent row eliminates one addi-
tional covariate (e.g., the third row excludes both spouse and head labor income).

6.2 Misallocation from International Financial Market Incompleteness

In our final application, we quantify misallocation from the lack of complete international
financial markets relative to the status-quo. More precisely, we calculate how much of
every consumption good (in the world) is left over if financial markets are completed
and agents in every country are kept indifferent relative to the status-quo. The larger
is this number, the greater is the extent of misallocation from incomplete risk-sharing.
Importantly, in this application abstract from within-country heterogeneity and assume
that each country has a representative agent.

To study the extent of misallocation, we use Proposition 7, which allows for hetero-
geneity in household consumption bundles. We assume the data is generated by an
economy satisfying the assumptions in Section 5 — allocations are efficient from a static
perspective, but potentially inefficient over time and states of nature. The advantage of
using the second-order approximation in Proposition 7, versus writing a fully-specified
structural model and applying the exact result in Proposition 1, is that the informational
requirements are much weaker. Specifically, we can apply Proposition 7 without taking
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a stance on the stochastic process driving either the wedges or the productivity shifters.
For example, there may be productivity changes that we did not explicitly model, like
changes in iceberg costs at the industry-country pair level, and they would not alter the
validity of the second approximation.

Calibration of model. We specialize the technologies introduced in Section 5 as follows.
There are 32 countries (households), 54 industries in each country, and one primary fac-
tor endowment per country (i.e. labor equipped by capital).22 The static preferences of
household h are an h-specific Cobb-Douglas aggregator across different industries. Con-
sumption by h from industry i is an (h, i)-specific Armington CES aggregator over differ-
ent origin countries, with elasticity of substitution θT.

The production function of industry i in country h is a Cobb-Douglas aggregator of
the local primary factor and an (h, i)-specific bundle of intermediate inputs from other in-
dustries. This intermediate bundle is also an (h, i)-specific Cobb-Douglas aggregator. The
industry-j input used by producers in country h is an (h, j)-specific Armington aggregator
with elasticity θT across different origin countries.23

We calibrate the expenditure shares using the 2014 release of the world input-output
database (Timmer et al., 2015).24 That is, we calibrate the consumption share of each
country ωh using that country’s share of total consumption, investment, and government
expenditures. We calibrate the input-output matrix required for Ahh′ using the transaction
flows in 2014. We calibrate each industry-country’s expenditures on intermediate inputs
from other industries and value-added from the WIOD.

We measure Backus-Smith wedges using the formula in Proposition 6, which ex-
presses them as a function of consumption expenditure shares, real exchange rates, and
the elasticity of intertemporal substitution (EIS).

22We drop the activities of private households as employers industry and the activities of extraterritorial
organizations and bodies industry from the sample. The list of countries is Australia, Austria, Belgium,
Brazil, Canada, Switzerland, China, Cyprus, Germany, Denmark, Spain, Finland, France, Great Britain,
Greece, Hungary, Indonesia, India, Ireland, Italy, Japan, South Korea, Luxembourg, Mexico, Malta, Nether-
lands, Norway, Poland, Portugal, Sweden, Turkey, and the US.

23This means we assume the same country-composition of the intermediate input bundle by industry. For
example, mining & quarrying and the manufacture of basic metals in Australia, have the same expenditure
shares on rubber and plastic products from China relative to India. On other hand, the expenditure share of
the rubber and plastic industry summed across all origins by the mining & quarrying industry in Australia
can differ from that by the manufacture of basic metals industry.

24To calibrate Proposition 7, we take advantage of the fact that, since allocations are statically efficient
by assumption, the observed relative prices of goods within each period and state, not including the con-
sumption wedges, in the decentralized equilibrium with wedges are equal to the relative marginal costs of
production. Hence, if, in the data, relative prices within periods and states reflect marginal costs, we can
calibrate the expenditures shares in the model directly to those in the data.
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We apply this formula at annual frequency from 1970 to 2019 using nominal consump-
tion data and CPI-based real exchange rates from the Global Macro Database from Müller
et al. (2025). This means that we treat the equilibrium starting in 1970 as part of the (date-
and state-contingent) status-quo allocation. Hence, we treat the observed path of wedges
as one realization (i.e. a sample path) of the wedges from the decentralized equilibrium
with wedges in status-quo. The log wedges are nonzero if changes in log relative con-
sumption and real exchange rates between countries do not comove perfectly. The corre-
lation between annual changes in real exchange rates and real consumption between the
US and each country is 0.17 for the median country, whereas perfect risk sharing implies
that this correlation should be −1. We quantify the extent of misallocation that results
from these wedges, abstracting from other possible distortions in the economy.

To compute the terms in Proposition 7, we assume an annual risk-free rate r = 0.05,
an EIS η = 0.5, and a trade elasticity θT = 2. We vary these parameters in sensitivity
analyses.

To estimate the time-zero expectations in Proposition 7, we treat the wedges from
1970 to 2019 as one sample path from the distribution generating the data. Since we only
have one realization of the sample path, we estimate the expectation using this single
observation. Because we do not observe all terms in the infinite sums for present value
calculations, we treat unobserved terms as equal to an average of the observations in the
last five years of the data (2015 to 2019).25 This mirrors the procedure we used in our
Monte Carlo simulation in Section 5.3.

Results. Misallocation in our baseline calibration is 5.2% — that is, with complete in-
surance markets, every country can be made indifferent to the status-quo allocation with
5.2% of every good left over. Recall that the status-quo allocation is the date- and state-
contingent consumption processes in the observed equilibrium. The extent of misalloca-
tion depends strongly on whether countries with rapid growth rates are included in the
sample. For example, if we exclude just China, then the extent of misallocation falls to
1.9% instead. If we drop China, India, Korea, and Indonesia as well, misallocation falls to
only 1.0%. After this, the results are quite stable to dropping more countries. This shows
that if we include large countries with very different growth rates in the sample, then the
extent of misallocation from lack of international financial markets becomes larger. In the
rest of this section, we report results including all 32 countries.

We experimented with varying the start date, for example, if we start in 1980 instead of
1970, then misallocation is slightly larger at 6.3%. If we start in 1993, then we can increase

25Results are very similar if we set unobserved terms equal to the last observed year of these terms.
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the number of countries in the sample by including 10 additional countries that belonged
to the Eastern Bloc. This raises misallocation to 6.6%.

We also vary the WIOD release year we calibrate to. If we use an earlier release date,
say 2006 instead of 2014, then misallocation is smaller, around 3.6% instead. This is be-
cause the world economy is less open in 2006 compared to 2014, so there is less scope for
international risk-sharing, as discussed in Example 3.
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Figure 8: Misallocation varying parameters. Dashed line is benchmark value.

Figure 8 shows how our estimates of misallocation change as a function of the Arm-
ington trade elasticity and the EIS. As expected from Example 3, misallocation is larger
the higher is the Armington elasticity, since more substitutablity between domestic and
foreign varieties facilitate more risk sharing; and misallocation is larger the lower is the
EIS, since observed fluctuations in consumption are most costly for lower values of the
EIS. Our estimates for misallocation are fairly insensitive to the Armington elasticity for
the range the literature considers empirically plausible (e.g. from 1 to 5). However, our
estimates are sensitive to lower values of the EIS. For example, if the EIS is 0.25, misal-
location is around 10% — and these losses go to infinity as η approaches zero. We do
not present graphs for how estimated misallocation varies as a function of the elasticity
of substitution between industries or between intermediates and value-added. Estimated
losses are slightly increasing in these elasticities.

7 Conclusion

We quantify misallocation due to households’ inability to perfectly share risks across
states of nature or to smooth consumption over time. We find that misallocation costs
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due to market incompleteness are substantial within countries, especially if the elasticity
of substitution across time and states of nature is low. Misallocation losses from imperfect
consumption-smooth across countries, assuming a representative agent in each country,
are much smaller. This is particularly true among developed economies, who do not have
very different growth rates, and if trade elasticities are relatively low, so that imports are
poor substitutes for domestic goods. A promising area for future research is to extend
our characterizations to study misallocation relative to the constrained efficient Pareto
frontier, accounting for the presence of other distortions and imperfections of policy.
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Appendix A Proofs

Proof of Proposition 1. See Theorem 1 from Baqaee and Burstein (2025b)

Proof of Proposition 2. See text.

Proof of Proposition 3. A decentralized equilibrium with wedges satisfies

max
cht(s)

1
1 − 1

η
∑ βtπ(s)cht(s)

1− 1
η

subject to

∑
s

∑
t

qt(s)µht(s)cht(s) ≤ Ih

and

∑
h

cht(s) = yt(s).

Without loss of generality, we set the price of the consumption good to one in every period
and state, pt(s) = 1 (since only pt(s)qt(s) is determined). Assume aggregate income is
the numeraire. The first order conditions, resource constraints, budget constraint, and
numeraire choice define equilibria:

βtπ(s)c
− 1

η

ht (s) = λhqt(s)µht(s).

∑
h

cht(s) = yt(s).

∑
s

∑
t

qt(s)µht(s)cht(s) = Ih

∑
h

Ih = 1.

We need to show that if

µht(s) =

[
ω0

ht(s)
ω0

h0

]− 1
η

,

where ω0
ht(s) are expenditure shares in the status-quo, then the following allocation is an

equilibrium:
cht(s) = c0

ht(s) = ω0
ht(s)yt(s).

This requires showing that there is a set of ϕh, qt(s), and Ih such that all the equilibrium
conditions are satisfied. Substituting in the wedges and the allocation into the first order
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condition yields the following restriction on ϕh and qt(s) :

ϕhqt(s) = βtπ(s)yt(s)
− 1

η

[
ω0

h0

]− 1
η .

Hence, dividing this equation for h′ by H for some fixed household H gives

ϕh′ = ϕH

(
ω0

H0

ω0
h′0

) 1
η

.

The resource constraint is satisfied automatically, since:

∑
h

cht(s) = ∑
h

ω0
ht(s)yt(s) = yt(s).

Finally, substituting the FOC into the budget constraint yields

∑s ∑t βtπ(s)c
1− 1

η

ht (s)
ϕh

= Ih.

Finally, the numeraire condition requires that

∑
h

Ih = 1.

Substituting the previous expression for Ih into this equation and rewriting every ϕh′ in
terms of ϕH for some h yields:

∑
h′

Ih′ = ∑
h′

∑s ∑t βtπ(s)c
1− 1

η

h′t (s)
ϕh′

= ∑
h′

∑s ∑t βtπ(s)c
1− 1

η

h′t (s)

ϕH

(
ω0

H0
ω0

h′0

) 1
η

= 1.

Hence, we require that

ϕH = ∑
h

(
ω0

H0

ω0
h0

)− 1
η

∑
s

∑
t

βtπ(s)c
1− 1

η

ht (s).

Since we can construct a collection of ϕh, qt(s), and Ih such that all equilibrium conditions
are satisfied, with cht(s) = ω0

ht(s)yt(s) and µht(s) given by (6), the proof is completed.

Define the fictitious compensated agent as follows.
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Definition 5. The compensated agent is an agent whose preferences are represented by

U(c) = min
h

{ũh(ch)},

where ũh(ch) =
[
uh(ch)/uh(c

0
h)
] η

η−1 .

Define the compensated equilibrium as follows.

Definition 6 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, and wedges as
the original economy but where there is a representative agent with preferences as in Def-
inition 5. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

Theorem 2 from Baqaee and Burstein (2025b) implies that aggregate efficiency can be
calculated via the utility of the compensated agent in the compensated equilibrium.

Proof of Proposition 4. We begin by showing the following lemma, drawn from Baqaee and
Burstein (2025b).

Lemma 1. At the status-quo, prices and quantities in the compensated equilibrium with wedges
in Equation (6) coincide with those in the decentralized equilibrium with the same wedges.

Proof of Lemma. A general proof can be found in Baqaee and Burstein (2025b). Here, we
provide a self-contained derivation. We use this lemma both when households consume
the same consumption good (as in the closed economy baseline) and when each house-
hold consumes a different bundle of goods (as in the international version of the model).
Hence, in the proof of this lemma, we allow for consumption prices pht(s) to vary by h,
to allow for the possibility that households consume different consumption goods. The
representative household maximizes

min
h

{ũh (ch)}

with

ũh (ch) =

∑ βtπ(s)cht(s)
1− 1

η

∑ βtπ(s)c0
ht(s)

1− 1
η


η

η−1

,

subject to a single budget constraint

∑
h

∑
s,t

qt (s) pht(s)µht (s) cht (s) ≤ I.
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The solution to this problem can be found by two-step budgeting. The representative
agent distributes income across h, and for each h maximizes ũh (ch) subject to

∑
s,t

qt (s) pht(s)µht (s) cht (s) = Ih.

The choice of {Ih}h in an interior equilibrium must be such that

ũh (ch) = ũh′ (ch) .

Setting Ih = I0
h for all h, where I0

h is the income level of household h in the status-quo
of the decentralized equilibrium with wedges gives the status-quo allocation c0, which
satisfies ũh

(
c0

h
)
= ũh′

(
c0

h
)
= 1.

Consider some exogenous parameter indexed by σ. For each value of σ, there is an en-
dogenous set of wedges µ(σ) that rationalize status-quo allocations, and for some value
of this parameter, normalized to be zero, the wedges are all equal to one: µ(0) = 1. Two
examples are the standard deviation of idiosyncratic risk and the inverse EIS.

From Proposition 8 in Baqaee and Burstein (2025b), we know that, to a second-order
approximation in σ, misallocation is given by

log A ≈ −1
2 ∑

h
∑
s,t

qt(s)cht(s)

[
d log ccomp

ht (s)
d logµ

· d logµ
dσ

]
d log µht(s)

dσ
∆σ2

= −1
2 ∑

h
∑
s,t

qt(s)cht(s)d log ccomp
ht (s)d log µht(s), (18)

where we use the short-hand d log ccomp
ht (s) to mean d log ccomp

ht (s)
d logµ · d logµ

dσ and d log µht(s) to
mean d logµ/dσ in the compensated equilibrium evaluated at σ = 0. In this equation, we
have used the convention that, in the compensated equilibrium with wedges, aggregate
wealth is equal to one (this is our choice of numeraire).

Throughout, we use the fact that because of Lemma 1, we can use expenditures in the
decentralized economy in place of expenditures in the compensated equilibrium with the
same wedges that rationalize that allocation.

To calculate d log ccomp
ht (s), consider the first order condition of the representative agent

in the compensated equilibrium:

∑t′ βt′π(s)ccomp
ht′ (s)1− 1

η

∑t′ βt′π(s)c0
ht′(s)

1− 1
η


η

η−1
βtπ(s)ccomp

ht (s)−
1
η

∑t′ βt′π(s)ccomp
ht′ (s)1− 1

η

= ϕ̃hqcomp
t (s) µht (s)
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where ϕ̃h is the Lagrange multiplier associated to h’s budget constraint. Defining

ϕh =

[
ϕ̃h

(
∑
t′

βt′π(s)ccomp
ht′ (s)1− 1

η

)]−1

, (19)

the first-order condition above can be written as

ũh

(
c

comp
h

)
βtπ(s)ccomp

ht (s)−
1
η = ϕ−1

h qcomp
t (s) µht (s)

Taking ratios between h and H,

ccomp
ht (s)

ccomp
Ht (s)

=

(
µht (s) ϕ−1

h

µHt (s) ϕ−1
H

)−η (
ũh
ũH

)η

. (20)

Log differentiating and using the fact that the compensated representative agent keeps
ũh/ũH constant, we have

d log ccomp
ht (s)− d log ccomp

Ht (s) = −η

(
d log

µht (s)
ϕh

− d log
µHt (s)

ϕH

)
, (21)

The condition d log ũh = d log ũH can be written as

∑
t,s

βtπ(s)ccomp
ht (s)1− 1

η

∑t′,s′ βt′π(s′)ccomp
ht′ (s′)1− 1

η

d log ccomp
ht (s) = ∑

t,s

βtπ(s)ccomp
Ht (s)1− 1

η

∑t′,s′ βt′π(s′)ccomp
Ht′ (s′)1− 1

η

d log ccomp
Ht (s) .

(22)
Throughout the rest of the proof, we use the fact that for any compensated equilibrium
value Xcomp we have

Xcomp
ht (s)(z,µ) ≈ Xcomp

ht (s)(z̄,1) +
dXcomp

ht
d log z

∆ log z +
dXcomp

ht
d logµ

· ∆ logµ.

Hence, to evaluate any coefficients in the second-order approximation, we can use Xcomp
ht (s)(z̄,1)

or Xcomp
ht (s)(z,µ) because the difference between them is first order, which when multi-

plied by the other terms in the Taylor expansion, will result in terms that are order three
or higher.

Hence, we can evaluate (22) at σ = 0, and without aggregate productivity shocks
(zt = z̄), where we know that ccomp

ht (s) = ccomp
h for all h, giving us

∑
t,s

βtπ(s)d log ccomp
ht (s) = ∑

t,s
βtπ(s)d log ccomp

Ht (s) .
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Substituting (21) into this, gives

∑
t,s

βtπ(s)
(

d log
µht (s)

ϕh
− d log

µHt (s)
ϕH

)
= 0.

so

d log ϕh − d log ϕH =
∑t,s π (s) βt (d log µht (s)− d log µHt (s))

∑t′′ βt′ .

Plugging back into (21),

d log ccomp
ht (s)− d log ccomp

Ht (s) = −η (d log µht (s)− d log µHt (s))

+ η
∑t′,s′ π (s′) βt′ (d log µht′ (s′)− d log µHt′ (s′))

∑t′ βt . (23)

Differentiating the resource constraint, at the status-quo, with respect to σ gives

∑
h′

c0
h′t (s) d log ccomp

ht (s) = ∑
h′

c0
h′t (s)

[
d log ccomp

ht (s)
d logµ

· d logµ

]
= 0,

where the second equation is a definition. Substituting (23) into the expression above and
rearranging yields:

d log ccomp
ht (s) = −η

(
d log µht (s)−

∑t′,s′ βt′π (s′) d log µht (s)
∑t′,s′ βt′π (s′)

−∑
h′

ω0
h′t (s)

(
d log µh′t (s)−

∑t′,s′ βt′π (s′) d log µh′t (s)
∑t′,s′ βt′π (s′)

))
.

We also have

d
dσ

log µht(s) = − 1
η

[
d log ω0

ht(s)
dσ

−
d log ω0

h0
dσ

]
≡ − 1

η

[
d log ω0

ht(s)− d log ω0
h0

]
,

where the last equality is a notational convention. We can now substitute these back into
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our Harberger triangle formula, (18):

∆ log A ≈ 1
2 ∑

h
∑
s,t

qt(s)cht(s)

[
η

(
d log µht (s)−

∑t′,s′ βt′π (s′) d log µht′ (s′)
∑t′,s′ βt′π (s′)

−∑
h′

ω0
h′t (s)

(
d log µh′t (s)−

∑t′,s′ βt′π (s′) d log µh′t′ (s′)
∑t′,s′ βt′π (s′)

))]
d log µht(s)

= −1
2 ∑

h
∑
s,t

qt(s)cht(s)

[(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

−∑
h′

ω0
h′t (s)

(
d log ω0

h′t(s)−
∑t′,s′ βt′π (s′) d log ω0

h′t′(s
′)

∑t′,s′ βt′π (s′)

))]
d log µht(s)

=
1
2

1
η ∑

h
∑
s,t

qt(s)cht(s)

[
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

]
×
[
d log ω0

ht(s)− d log ω0
h0

]
− 1

2
1
η ∑

h
∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s)

(
d log ω0

h′t(s)−
∑t′,s′ βt′π (s′) d log ω0

h′t′(s
′)

∑t′,s′ βt′π (s′)

)]
×
[
d log ω0

ht(s)− d log ω0
h0

]
=

1
2

1
η ∑

h
∑
s,t

qt(s)cht(s)

[
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

] [
d log ω0

ht(s)− d log ω0
h0

]
+

1
2

1
η ∑

h
∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s)

∑t′,s′ βt′π (s′) d log ω0
h′t′(s

′)

∑t′,s′ βt′π (s′)

] [
d log ω0

ht(s)− d log ω0
h0

]
,

where the final line uses the fact that ∑h′ ω0
h′t (s) d log ω0

h′t(s) = 0. We now focus on the
last line of the expression above, and show that it is equal to zero to a second-order ap-
proximation. To do so, introduce a new symbol:

xh′ ≡
∑t′,s′ βt′π (s′) d log ω0

h′t′(s
′)

∑t′,s′ βt′π (s′)
.

Using this symbol, we show that the following term is zero to a second-order:

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s)

∑t′,s′ βt′π (s′) d log ω0
h′t′(s

′)

∑t′,s′ βt′π (s′)

] [
d log ω0

ht(s)− d log ω0
h0

]
=

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s) xh′

] [
d log ω0

ht(s)− d log ω0
h0

]
. (24)
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Define

ω̄0
h =

∑t′,s′ βt′π (s′)ω0
h′t′(s

′)

∑t′,s′ βt′π (s′)
.

Note that
ω0

ht(s) = ω̄h +
dωht(s)

dσ
dσ.

Hence, we can substitute this into (24) to get

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s) d log ω̄h′

] [
d log ω0

ht(s)− d log ω0
h0

]
= ∑

h
∑
s,t

qt(s)cht(s)

[
∑
h′

[
ω̄h′ +

dωh′t(s)
dσ

dσ

]
xh′

] [
d log ω0

ht(s)− d log ω0
h0

]
.

Dropping higher order terms gives

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω0
h′t (s) d log ω̄h′

] [
d log ω0

ht(s)− d log ω0
h0

]
= ∑

h
∑
s,t

qt(s)cht(s)

[
∑
h′

ω̄h′xh′

] [
d log ω0

ht(s)− d log ω0
h0

]
.

Next substitute xh′ back in to get

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω̄h′xh′

] [
d log ω0

ht(s)− d log ω0
h0

]
= ∑

h
∑
s,t

qt(s)cht(s)

[
∑
h′

ω̄h′
∑t′,s′ βt′π (s′)

[
d log ω0

h′t′(s
′)
]

∑t′,s′ βt′π (s′)

] [
d log ω0

ht(s)− d log ω0
h0

]
= ∑

h
∑
s,t

qt(s)cht(s)

[
(1 − β) ∑

t′,s′
βt′π

(
s′
)
∑
h′

ω̄h′
[
d log ω0

h′t′(s
′)
]] [

d log ω0
ht(s)− d log ω0

h0

]
= ∑

h
∑
s,t

qt(s)cht(s)

[
(1 − β) ∑

t′,s′
βt′π

(
s′
)
∑
h′

[
ω0

h′t(s)−
dωh′t(s)

dσ
dσ

] [
d log ω0

h′t′(s
′)
]]

×
[
d log ω0

ht(s)− d log ω0
h0

]
.
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Again drop higher order terms to get

∑
h

∑
s,t

qt(s)cht(s)

[
∑
h′

ω̄h′xh′

] [
d log ω0

ht(s)− d log ω0
h0

]
≈ ∑

h
∑
s,t

qt(s)cht(s)

[
(1 − β) ∑

t′,s′
βt′π

(
s′
)
∑
h′

ω0
h′t(s)d log ω0

h′t′(s
′)

] [
d log ω0

ht(s)− d log ω0
h0

]
= 0,

since ∑h′ ω0
h′t(s)dlog ω0

h′t′(s’) = 0. This allows us to write

∆ log A ≈ 1
2η ∑

h,s,t
qt(s)cht(s)

(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht(s)

∑t′,s′ βt′π (s′)

) [
d log ω0

ht′(s
′)− d log ω0

h0

]
.

Next, we use the fact that, at σ = 0 and zt = z̄, we have qt(s) = (1 + r)−t/ ∑(1 + r)−t′ ȳ
and cht(s) = ωh0ȳ. Note that the denominator in the Arrow security price is needed to
ensure aggregate wealth is equal to one (our choice of numeraire).

So, we can again, evaluate the coefficients at this point (since differences are higher
order):

∆ log A ≈

1
2

1
η ∑

h
∑
s,t

(1 + r)−t

∑t′(1 + r)−t′ ȳ
ωh0ȳ

(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

hst′(s
′)

∑t′,s′ βt′π (s′)

) [
d log ω0

ht(s)− d log ω0
h0

]
=

1
2

1
η ∑

h
∑
s,t

(1 + r)−t

∑t′(1 + r)−t′ ωh0

(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

) [
d log ω0

ht(s)− d log ω0
h0

]
=

1
2

1
η ∑

h
∑
s,t

r
1 + r

(1 + r)−tωh0

(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

) [
d log ω0

ht(s)− d log ω0
h0

]
=

1
2

1
η ∑

h
∑
s,t

r
(1 + r)t+1 ωh0

(
d log ω0

ht(s)−
∑t′,s′ βt′π (s′) d log ω0

ht′(s
′)

∑t′,s′ βt′π (s′)

) [
d log ω0

ht(s)− d log ω0
h0

]
.

Finally, we use the fact that

d log ω0
ht(s) ≈ log ω0

ht(s)− log ωh,

where log ωh is household h′s consumption share when σ = 0 (i.e. the point of approxi-
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mation). Hence, if we substitute this into the Harberger formula and cancel, we get

∆ log A ≈ 1
2

1
η ∑

h
∑
s,t

r
(1 + r)t+1 ωh0

[([
log ω0

ht(s)− log ωh

]
− ∑t′,s′ βt′π (s′)

[
log ω0

ht(s)− log ωh
]

∑t′,s′ βt′π (s′)

)]
×
[(

log ω0
ht(s)− log ωh

)
−
(

log ω0
h0(s)− log ωh

)]
=

1
2

1
η ∑

h
∑
s,t

r
(1 + r)t+1 ωh0

[(
log ω0

ht(s)−
∑t′,s′ βt′π (s′)

[
log ω0

ht(s)
]

∑t′,s′ βt′π (s′)

)]
×
[
log ω0

ht(s)− log ω0
h0(s)

]
.

Proof of Proposition 5. In this proof, we use Ct(s) andC to denote the aggregate consump-
tion process, instead of lower case ct(s) and c, so as to avoid confusion with consumption
allocations, c = {ch}. Observe that consumption allocations on the Pareto frontier must
satisfy cht(s) = λhCt(s) for some household-specific λh with ∑h λh = 1. Define Γ(k0)

to the set of feasible aggregate consumption paths given initial capital stock k0. Then
substituting this into (2), and manipulating yields

A = max
λ,C

min
h

{ũh(ch) : {ch} ∈ C} ,

= max
λ,C

min
h

{λhũh(C) : C ∈ Γ(k0)} ,

using the functional form for ũh(ch) =

(
∑s π(s)∑∞

t=0 βtcht
1− 1

η

∑s π(s)∑∞
t=0 βtc0

ht(s)
1− 1

η

) η
η−1

, we have

= max
λ,C

min
h

λh

∑s π(s)∑∞
t=0 βtCt(s)

1− 1
η

∑s π(s)∑∞
t=0 βtc0

ht(s)
1− 1

η


η

η−1

: C ∈ Γ(k0)

 ,

= max
λ,C

min
h

λh

(
∑

s
π(s)

∞

∑
t=0

βtc0
ht(s)

1− 1
η

)− η
η−1
(

∑
s

π(s)
∞

∑
t=0

βtCt(s)
1− 1

η

) η
η−1

: C ∈ Γ(k0)

 ,

= max
λ

min
h

λh

(
∑

s
π(s)

∞

∑
t=0

βtc0
ht(s)

1− 1
η

)− η
η−1
max

C


(

∑
s

π(s)
∞

∑
t=0

βtCt(s)
1− 1

η

) η
η−1

: C ∈ Γ(k0)

 .

LetC∗ be the maximizing choice of aggregate consumption in the maximization problem
above. Then, we know that λhũh(C

∗) = λh′ ũh′(C
∗). Furthermore, we know that the
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solution to

max
λ

min
h

λh

(
∑

s
π(s)

∞

∑
t=0

βtc0
ht(s)

1− 1
η

)− η
η−1


implies that for some fixed h and every h′

λh

(
∑s π(s)∑∞

t=0 βtc0
h′t(s)

1− 1
η

) η
η−1

(
∑s π(s)∑∞

t=0 βtc0
ht(s)

1− 1
η

) η
η−1

= λh′ ,

as well as

∑
h′

λh′ = 1.

Combining these equations yields

λh =

(
∑s π(s)∑∞

t=0 βtc0
ht(s)

1− 1
η

) η
η−1

∑h′
(

∑s π(s)∑∞
t=0 βtc0

h′t(s)
1− 1

η

) η
η−1

,

for every h. Hence,

A = λhũh(C
∗)

=

(
∑s π(s)∑∞

t=0 βtc0
ht(s)

1− 1
η

) η
η−1

∑h′
(

∑s π(s)∑∞
t=0 βtc0

h′t(s)
1− 1

η

) η
η−1

∑s π(s)∑∞
t=0 βtC∗

t (s)
1− 1

η

∑s π(s)∑∞
t=0 βtc0

ht(s)
1− 1

η


η

η−1

=

(
∑s π(s)∑∞

t=0 βtC∗
t (s)

1− 1
η

) η
η−1

∑h′
(

∑s π(s)∑∞
t=0 βtc0

h′t(s)
1− 1

η

) η
η−1

.

Substituting this into (4) and using the definition of certainty equivalent yields the desired
result.

Proof of Proposition 6. Recall from Definition 4 that a general equilibrium with wedges is a
collection of prices and quantities such that: (1) the price of each good i equals its marginal
cost of production; (2) each producer takes prices as given and chooses quantities to max-
imize profits; (3) each household chooses consumption quantities to maximize utility tak-
ing prices, consumption tax wedges, and income as given; (4) household h earns income
from primary factors and tax revenues; (5) all resource constraints are satisfied.
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We show that given the wedges in (16), the status-quo allocation, and status-quo static
relative prices constitute a decentralized equilibrium with wedges. We do this by show-
ing that there is some distribution of household wealth and Arrow security prices (to be
determined), such that the status-quo allocations and prices maximize each household’s
problem, cause prices to equal marginal cost for each good, and statisfy all resource con-
straints.

By construction, the static relative prices satisfy the firms’ first-order conditions and
set prices equal to marginal costs. Furthermore, all resource constraints are satisfied by
construction. Hence, we only need to check that the candidate equilibrium can satisfy the
households’ problem. Consider the households’ problem:

max
cht(s)

1
1 − 1

η
∑ βtπ(s)cht(s)

1− 1
η

subject to

∑
s

∑
t

qt(s)pht(s)µht(s)cht(s) ≤ Ih,

where Ih is the household’s wealth. We assume that aggregate wealth is the numeraire,
so that

∑
h

Ih = 1.

Equation (16) implies that the wedges are given by:

µht(s) =

[
p0

ht (s) /p0
h0

p0
h̄t (s) /p0

h̄0

] 1−η
η
[

ω0
ht (s) /ω0

h0

ω0
h̄t (s) /ω0

h̄0

]− 1
η

, (25)

where ω0
ht(s) and p0

ht(s) are expenditures and goods’ prices in the status-quo. In this
equation, we explicitly distinguish between prices in the decentralized equilibrium with
these wedges, pht(s) and the prices in the primitive economy in status-quo p0

ht(s). This
abuse of notation is harmless, since, as we show in this proof, p0

ht(s) is consistent with
equilibrium in the decentralized economy with wedges.

We show that the status-quo allocation and static relative prices are decentralized
equilibria by showing that all remaining equilibrium conditions, namely first-order con-
ditions for utility maximization, household budget constraints, and the numeraire condi-
tion, can all be satisfied given these wedges, relative static prices, and quantities. To that
end, in the decentralized equilibrium with wedges that we construct, the consumption
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allocation can be expressed as

cht (s) = c0
ht (s) =

ω0
ht (s) E0

t (s)
p0

ht (s)
,

where
E0

t (s) = ∑
h

p0
ht (s) c0

ht (s) .

The first-order condition for cht (s), given Lagrange multiplier ϕh and Arrow security
prices qt(s) is

βtπ(s)c
− 1

η

ht (s) = ϕhqt(s)pht(s)µht(s).

Substituting (25) into this first-order condition yields the following restriction on La-
grange multipliers ϕh and Arrow prices qt(s):

βtπ(s)p
1
η

ht(s)E
− 1

η

t (s)ω
− 1

η

ht (s) = ϕhqt(s)pht(s)

[
p0

ht (s) /p0
h0

p0
h̄t (s) /p0

h̄0

] 1−η
η
[

ω0
ht (s) /ω0

h0

ω0
h̄t (s) /ω0

h̄0

]− 1
η

. (26)

We conjecture that p0
ht(s) = pht(s) is consistent with equilibrium. Then, dividing this

equation for h′ by h̄ for some fixed household h̄ allows us to express ϕh as a function of
ϕh̄:

ϕh′ = ϕh̄

(
ω0

h̄0

ω0
h′0

) 1
η
(

p0
h0

p0
h̄0

) 1−η
η

. (27)

Substituting the FOC into the budget constraint pins down household wealth as a func-
tion of Lagrange multipliers ϕh:

∑s ∑t βtπ(s)c
1− 1

η

ht (s)
ϕh

= Ih. (28)

The numeraire condition pins down ϕh̄:

∑
h′

Ih′ = ∑
h′

∑s ∑t βtπ(s)c
1− 1

η

h′t (s)
ϕh′

= ∑
h′

∑s ∑t βtπ(s)c
1− 1

η

h′t (s)

ϕh̄

(
ω0

h̄0
ω0

h′0

) 1
η
(

p0
h0

p0
h̄0

) 1−η
η

= 1
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Hence, we require that

ϕh̄ = ∑
h

(
ω0

h̄0

ω0
h0

)− 1
η
(

p0
h0

p0
h̄0

) η−1
η

∑
s

∑
t

βtπ(s)c
1− 1

η

ht (s). (29)

Hence, (29) pins down ϕh̄, (27) pins down ϕh for every other h, (28) pins down Ih, and (26),
for any h, pins down the Arrow security prices qt(s) in the decentralized equilibrium with
wedges that supports the status-quo allocation. Since expenditures in the decentralized
equilibrium with wedges coincides with expenditures in the status-quo, and production
technologies are all the same, and all firms set prices equal to marginal cost, static relative
prices in the status-quo are consistent with equilibrium, which confirms the conjecture
above.

Proof of Proposition 7. We follow the same steps as in the proof of Proposition 4, but this
time allowing for differences in consumption baskets across households. First, index al-
locations by an exogenous scalar parameter σ. We assume that allocations are a smooth
function of σ, which means that µ(σ), defined by (16) is also smooth. We assume that
µ(0) = 1 and zt(σ) = z̄, so that at σ = 0, wedges are all equal to one and productivities
are constant over time and state. For example, the parameter σ could index the standard
deviation of h-level productivities.

As before, following Proposition 8 from Baqaee and Burstein (2025b), we express mis-
allocation to a second-order approximation in the parameter σ as

log A = −1
2 ∑

h
∑
s,t

qt(s)pht(s)cht(s)d log ccomp
ht (s)d log µht(s). (30)

Here, d log ccomp
ht (s) is a short-hand to mean d log ccomp

ht (s)
d logµ · d logµ

dσ and d log µht(s) to mean
d logµ/dσ in the compensated equilibrium evaluated at σ = 0, with µ(0) = 1. As before,
we take aggregate wealth to be the numeraire.

The first-order conditions of the compensated agent imply

ccomp
ht (s)

ccomp
h̄t (s)

=

(
pht (s) µht (s) ϕ−1

h

ph̄t (s) µh̄t (s) ϕ−1
h̄

)−η (
ũh
ũh̄

)η

. (31)

The derivation is very similar to that of equation (20) but allows for difference in house-
holds’ consumption baskets.

We now solve for d log ccomp
ht (s) up to a first-order approximation. Log differentiate
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(31) and use the fact that the representative agent keeps ũh/ũh̄ unchanged to obtain

d log ccomp
ht (s)− d log ccomp

h̄t (s) = −ηd log
pcomp

ht (s)

pcomp
h̄t (s)

− η

(
d log

µht (s)
ϕh

− d log
µh̄t (s)

ϕh̄

)
,

(32)
where ϕh is household h’s Lagrange multiplied defined in (19). This equation pins down
final demand in the compensated economy as a function of relative prices in the compen-
sated economy, wedges, and Lagrange multipliers.

To pin down these down, we must introduce some notation from the production side
of the model. Define the within-period (static) (H + N + F)× (H + N + F) input-output
matrix:

Ω =



0 · · · 0 b11 · · · b1N 0 · · · 0
... · · · ... · · · · · ·
0 · · · 0 bH1 · · · bHN 0 · · · 0

0 · · · 0 Ω11 · · · Ω1N Ω1N+1 · · · Ω1N+F
... · · · ... . . .

0 · · · 0 ΩN1 ΩNN ΩNN+1 · · · ΩNN+F

0 · · · 0 0 · · · 0 0 · · · 0
... · · · ...

... · · · ...
... · · · ...

0 · · · 0 0 · · · 0 0 · · · 0


The first H rows correspond to the households consumption baskets. The next N rows
correspond to the expenditure shares of each producer on every other producer and fac-
tor. The last F rows correspond to the expenditure shares of the primary factors. Every
row of Ω adds up to one or zero.

The Leontief inverse matrix is the (H + N + F)× (H + N + F) matrix defined as

Ψ ≡ (I − Ω)−1.

Let ωh denote the share of expenditures of household h in total expenditures in a given
period. That is,

ωht (s) =
pht (s) cht (s)

∑ ph′t (s) ch′t (s)
=

pht (s) cht (s)
Et(s)

,

where Et(s) denotes total final expenditures in period t and date s (not including wedge
revenues).

The within-period Domar weights are denoted by λ, where λit(s) are the sales of i in
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period t and state s relative to total final expenditures, Et(s), in that date and state26

λit(s) =
pit(s)yit(s)

Et(s)
1[i ∈ N] +

wit(s)lit(s)
Et(s)

1[i ∈ F] +
pit(s)cit(s)

Et(s)
1[i ∈ H].

Market clearing identities imply that:

λ′
t(s) = ω′

t(s) + λ′
t(s)Ωt(s) = ωt(s)′Ψt(s).

The following equations hold to a first-order in the compensated equilibrium. Goods’
prices in a given period and state are given by the Leontief-inverse weighted changes in
factor prices in that period and state:

d log pcomp
t (s) = ∑

f
Ψ(:, f )d log λ

comp
f t (s) + d log Ecomp

t (s), (33)

where λ f t(s) is the sales of factor f in period t and state s relative to total final expendi-
tures Ecomp

t (s) = ∑h µht(s)pcomp
ht (s)ccomp

ht (s) and Ψ(:, f ) is f th column of Ψ corresponding
to factor f . We use the fact that changes in the wage of factor f in period t and state s
is, in logs, the same as the change in expenditures on that factor (since factor quantity
is held fixed in the variation). This equation is standard and follows from Shephard’s
lemma, factor market clearing in the compensated equilibrium, and the fact that ∑ f Ψ(:, f )

is a vector of all ones.
Next, we note changes in the input-output matrix in period t and state s depend on

changes in relative prices, which implies:

dΩcomp
t (s) = Θd log λ

comp
t (s) , (34)

where Θ is some matrix involving cross-price elasticities and the Leontief inverse (we
provide the specific formula for Θ below).

Finally, differentiating the identity that
(

λ
comp
t (s)

)′
= (ω

comp
t (s))′Ψcomp

t (s) gives

(
dλ

comp
t (s)

)′
= (ωcomp)′ΨdΩcomp

t (s)Ψ +
(

dω
comp
t (s)

)′
Ψ (35)

where we use the fact that at the point of approximation, Ψcomp
t (s) = Ψt(s) and where

26Within-period Domar weights are sales in a period divided by total consumption expenditures in that
period. We refer to these as within-period Domar weights to contrast them with Arrow-Debreu Domar
weights, which are net present value sales divided by net present value of total consumption using Arrow
securities.
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ω
comp
ht (s) denotes household h’s share of total final spending in that period and state.

Finally, by definition,

d log ccomp
t (s) = d log ω

comp
t (s)−

[
d log pcomp

t (s)− d log Ecomp
t (s)

]
. (36)

Inspecting the above linearized system (32), (33), (34), (35), and (36), we can express
d log ccomp

ht (s) as a function of {d log µht (s)− d log ϕh}:

d log ccomp
ht (s) = M(h,:) (d logµt(s)− d logϕ) ,

where d logϕ = {d log ϕh}H
h=1, d logµt = {d log µht}H

h=1, and M(h,:) are vectors for each h
with coefficients that depend on parameters and shares in the allocations without shocks
(see below for the explicit functional form).

We now solve for d log ϕh. The condition d log ũh = d log ũh̄ can be expressed as

∑s,t π (s) βtccomp
ht (s)1− 1

η

∑s,t′ π (s) βt′ccomp
ht′ (s)1− 1

η

d log ccomp
ht (s) =

∑s,t π (s) βtccomp
h̄t (s)1− 1

η

∑t′ π (s) βtccomp
h̄t′ (s)1− 1

η

d log ccomp
h̄t (s)

We evaluate this expression at the point with no shocks, σ = 0, where we know that
ccomp

ht (s) = ch for every h, giving us

∑
t,s

βtπ(s)d log ccomp
ht (s) = ∑

t,s
βtπ(s)d log ccomp

h̄t (s) .

Substituting

∑
s,t

π (s) βt ∑
h′

[
M(h,h′) −M(h̄,h′)

]
d log µh′t (s) = ∑

s,t
π (s) βt ∑

h′

[
M(h,h′) −M(h̄,h′)

]
d log ϕh′ ,

or,

∑
h′

[
M(h,h′) −M(h̄,h′)

] ∑s,t π (s) βtd log µh′t (s)
∑s,t π (s) βt = ∑

h′

[
M(h,h′) −M(h̄,h′)

]
d log ϕh′ .

Therefore, a solution is to set

d log ϕh′ =
∑s,t π (s) βtd log µh′t (s)

∑s,t π (s) βt .
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Substitute this solution into (32) to get

d log ccomp
ht (s)− d log ccomp

h̄t (s) = −η
(

d log pcomp
ht (s)− d log pcomp

h̄t (s)
)

(37)

− η

(
d log µht (s)−

∑s′,t′ π (s′) βt′d log µht′ (s′)
∑ π (s′) βt′

−d log µh̄t (s) +
∑s′,t′ π (s′) βt′d log µh̄t′ (s

′)

∑ π (s′) βt′

)
.

Combining this with (33), (34), (35), and (36) results in a linear system of equations that
pins down d log ccomp

ht (s) in the compensated equilibrium as a function of Ψ, ω, cross-price
elasticities in production and consumption (which determine Θ), and the forcing terms

d log µht (s)−
∑t′,s′ π (s′) βt′d log µht′ (s′)

∑ π (s′) βt′ ,

all of which can be recovered from the decentralized equilibrium at the status-quo. This
results in the matrix of interest M, mentioned in the statement of the proposition. We
provide an explicit formula for M in terms of price elasticities and expenditure shares
below. But first, we show that the choice of h̄ does not affect the results of the proposition.

Showing that the choice of h̄ is irrelevant. Here, we also note that the choice of h̄ does
not affect the approximation formula in (30). First, note that, by inspection, ∑h′ Mh,h′ =

0, since the forcing terms only show up in difference in (37). Hence, adding the same
constant to every forcing does not alter d log ccomp

t (s) , which means that ∑h′ Mh,h′ = 0.
We now show that changing h̄ has no effect on (30) by using this fact. Start by rear-

raing:

log A ≈ ∑
h

∑
s,t

qt(s)pht(s)cht(s) d log ccomp
ht (s) d log µht(s)

= ∑
s,t

qt(s)Et(s)∑
h

ωht(s) d log ccomp
ht (s) d log µht(s)

= ∑
s,t

qt(s)Et(s)∑
h

ωht(s)∑
h′
Mh,h′

[
d log µh′t(s)− d log µ̄h′

]
d log µht(s).

We show that this is also equal to

log Aalt = ∑
s,t

qt(s)Et(s)∑
h

ωht(s)∑
h′
Mh,h′

[
d log µh′t(s)− d log µ̄h′ + yt(s)

][
d log µht(s) + xt(s)

]
,
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for any xt(s) and yt(s), which is what changing h̄ does. To see, consider

log Aalt = ∑
s,t

qt(s)Et(s)∑
h

ωht(s)∑
h′
Mh,h′

[
d log µh′t(s)− d log µ̄h′ + yt(s)

][
d log µht(s) + xt(s)

]
= ∑

s,t
qt(s)Et(s)∑

h
ωht(s)∑

h′
Mh,h′

[
d log µh′t(s)− d log µ̄h′

][
d log µht(s)

]
+ ∑

s,t
qt(s)Et(s)∑

h
ωht(s) yt(s) d log µht(s) ∑

h′
Mh,h′︸ ︷︷ ︸
=0

+ ∑
s,t

qt(s)Et(s) xt(s) ∑
h

ωht(s)∑
h′
Mh,h′

[
d log µh′t(s)− d log µ̄h′

]
︸ ︷︷ ︸

=0

+ ∑
s,t

qt(s)Et(s)∑
h

ωht(s) yt(s) xt(s) ∑
h′
Mh,h′︸ ︷︷ ︸
=0

= log A.

The first underbrace follows from the fact that ∑h′ Mh,h′ = 0, the second underbrace
follows from the Envelope theorem, which implies that production is statically efficient,
so that aggregate real consumption in each date and state does not respond to wedges to
a first order, and the last underbrace follows from ∑h′ Mh,h′ = 0.

Explicit Formula for M. To make this more explicit, we now provide the explicit ex-
pression for Mhh′ . For any three positive vectors a, b, and c, define the covariance by

Cova(b, c) = ∑i aibici

∑i′ ai′
− ∑i aibi

∑i′ ai′

∑i aici

∑i′ ai′
.

Define the F × F matrix B with element ( f , f ) given by

B f , f ′ = (1 − η)Covω′(Ψ(:, f ), Ψ(:, f ′)) + ∑
f ′∈F

∑
j∈H∪N

λj(1 − θj)CovΩ(j.:)
(Ψ(:, f ), Ψ(:, f ′)),

where Ω(j,:) is the jth row of Ω. Define the F × H matrix D with element ( f , h) given by

D f ,h = Covω′(eh, Ψ(:, f ))

where eh is the h-th basis vector column vector (with hth element equal to 1). Define the
H × H matrix.

F = −ηΨHF (diag(λF)− B)−1 D.
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where ΨHF is the H × F block of Ψ corresponding to households’ direct and indirect
exposure to each factor and λF is the F× 1 vector of static factor shares (the last F elements
of λ). Finally, define the H × H matrix,

M = −η (F + I)− (1 − η)1ω′F + 1ηω′.

The element (h, h′) of M is Mhh′ in Proposition 7. Note that M depends on the input-
output matrix Ω, expenditure shares ω, and elasticities of substitution in production and
consumption, θj for j ∈ H ∪ N, and the EIS η.

Substituting our expression for d log ccomp
t (s) into (30) yields the desired expression.

The last step is to recognize that at σ = 0, we have

qt(s)pht(s)cht(s) =
(1 + r)−t phch

∑h′,t′,s′(1 + r)−t′ ph′ch′
=

(1 + r)−t

∑t′(1 + r)−t′
phch

∑h′ ph′ch′
.

Hence, we can replace

qt(s)pht(s)cht(s) =
(1 + r(0))−t

∑t′(1 + r(0))−t′ ωh(0),

where ωh(0) and r(0) make explicit the dependence of ωh and r on σ = 0. We can replace
these with the expenditure shares, ωh0(σ), and risk free rate in the first period, r(σ), both
in the decentralized equilibrium, since any differences will be third order.

Derivation of equation (5). Consider first the numerator. The maximization problem

max
c∈C

CEVOI(c)

splits aggregate consumption uniformly across all agents:

c∗h =
∑h′ c

0
h′

H
.

The certainty-equivalent of a population-weighted lottery of {c∗h} is

CEVOI ({c∗h}) =
(
(1 − β)

(
1 − 1

η

)
∑

h∈H

1
H

u(c∗h)

) η
η−1

= CE

(
∑h′ c

0
h′

H

)
,
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where we used the fact that

CE(ch) =
(
(1 − β)

(
1 − 1

η

)
u(ch)

) η
η−1 .

Consider now the denominator:

CEVOI({c0
h}) =

(
(1 − β)

(
1 − 1

η

)
∑

h∈H

1
H

u(c0
h)

) η
η−1

=

∑
h∈H

CE(c0
h)

η−1
η

H


η

η−1

.

Taking the ratio of the numerator and denominator yields equation (5).

Derivation of equation (11) Suppose that preferences take the standard functional form
in Example 1. In this case, CE(ch, lh) is the value of CE that solves

1
1 − β

1
1 − 1/η

(
CEγ l̄1−γ

)1− 1
η
= uh(ch, lh),

so

CE(ch, lh) =
[(1 − β)(1 − 1/η)]

η
γ(η−1)

l̄
1−γ

γ︸ ︷︷ ︸
constant

× (uh(ch, lh))
η

(η−1)γ ,

and

∑
h

CE(ch, lh) = constant × ∑
h
(u(ch, lh))

η
(η−1)γ .

We now calculate ∑h CE(c∗h, l∗h) for any allocation {c∗h, l∗h} in the Pareto efficient frontier.
Under the assumptions of this example,

c∗ht(s) = c∗h, l∗ht(s) = l∗h , with
∂v(c∗h, l∗h)

∂ch
=

∂v(c∗h, l∗h)
∂lh

,

or
l∗h =

1 − γ

γ
c∗h.

Hence,

uh(c
∗
h, l∗h) =

1
1 − 1/η

1
1 − β

(
1 − γ

γ

) (1−γ)(η−1)
η

(c∗h)
η−1

η ,
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and

∑
h

CE(c∗h, l∗h) =
[(1 − β)(1 − 1/η)]

η
γ(η−1)

l̄
1−γ

γ

×∑
h
(u(c∗h, l∗h))

η
(η−1)γ =

(
1 − γ

γ

1
l̄

) 1−γ
γ

︸ ︷︷ ︸
constant

×∑
h
(c∗h)

1
γ .

Any allocation (c∗h, l∗h) in the Pareto frontier satisfies

∑
h

c∗h = y∗ = ∑
h

(
1 − 1 − γ

γ
c∗h

)
,

so

∑
h

c∗h = y∗ = γ ∑
h

1.

Setting c∗h = αhγ ∑h 1, with ∑ αh = 1, we obtain

∑
h

CE(c∗h, l∗h) =
(

1 − γ

l̄

) 1−γ
γ

γ︸ ︷︷ ︸
constant

×∑
h
(αh)

1
γ ,

which corresponds to equation (11). This measure assigns (weakly) higher values to more
unequal weights {αh} since γ ≤ 1.
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