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Abstract

This paper quantifies misallocation caused by limited risk-sharing and imper-

fect consumption-smoothing. We measure these losses in terms of how much of

society’s resources would be left over if financial markets were complete and each

household was compensated to maintain its status-quo welfare. Using exact for-

mulas and approximate sufficient statistics, we analyze standard incomplete-market

environments—ranging from closed-economy Bewley-Aiyagari models to multi-country

settings with input-output linkages. We find that incomplete insurance against id-

iosyncratic risk is very costly — on the order of 20% of aggregate consumption, using

both structural models and sufficient statistics formulas applied to household con-

sumption panel data. We estimate the costs of imperfect international financial mar-

kets (abstracting from within-country heterogeneity) to be around 5 percent overall.

This depends critically on the inclusion of fast-growing countries such as China and

India. Unexploited risk-sharing opportunities among countries at similar levels of

development, on the other hand, are fairly limited (less than 1%).
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1 Introduction

If households can neither perfectly share risk across different states of nature nor smooth
consumption efficiently over time, the resulting misallocation of resources can be sub-
stantial. This paper measures that misallocation by asking a counterfactual question: if fi-
nancial markets were complete and we compensated every household so that no one was
worse off than under the status quo, how much of the available resources would be left
over? This is measure of inefficiency introduced in Baqaee and Burstein (2025b). We de-
velop a framework to characterize this measure of misallocation in a range of workhorse
models with incomplete financial markets — both in closed-economy (domestic) and
open-economy (international) settings.

We provide exact formulas for these welfare losses and show how to approximate
them using sufficient statistics derived from observed consumption allocations. In a cal-
ibrated Bewley-Aiyagari economy, our quantitative exercises reveal that misallocation is
sizeable, around 20 percent — substantially larger than gains from eliminating aggregate
fluctuations in complete markets (e.g. Lucas, 1987), yet smaller than measures that ignore
households’ ex-post heterogeneity (e.g., “behind-the-veil” welfare metrics). We validate
this number by applying our sufficient statistics approach to the Panel Study of Income
Dynamics (PSID), again finding losses on the order of 20 percent.

Turning to the international economics, we study a setup with multiple countries,
each with a representative agent, and industries interconnected by input-output linkages.
Here, we assume there are complete markets within countries but not across them. We es-
timate the costs of imperfect international risk sharing to be around 5 percent overall, but
this depends crucially on the inclusion of fast-growing countries such as China and India.
If we exclude these high-growth countries from the sample, then misallocation losses fall
to below 1 percent. Together, these results underscore the potentially large welfare gains
of more complete risk sharing, especially in domestic settings or between emerging and
developed economies. Risk-sharing opportunities among countries at similar levels of
development, on the other hand, are fairly limited.

Our approach exploits the fact that we need not explicitly model the specific imper-
fections in financial markets to quantify the resource misallocation they generate. Both
our exact and approximate formulas for misallocation losses can be derived solely from
the observed (status-quo) consumption allocation and from knowledge of the Pareto ef-
ficient frontier. As a result, once the equilibrium consumption process is taken as given,
the fine-grained details of which frictions or market failures produced this consumption
pattern become irrelevant. This greatly simplifies measurement and eliminates the need

2



to make assumptions about or to calibrate the primitive financial imperfections.
A second key advantage is that our approximate formulas obviate the need to model

the underlying productivity process or to disentangle which portion of consumption fluc-
tuations stem from efficient (productivity-driven) shocks versus inefficient (distortion-
induced) fluctuations. This distinction is especially pertinent in international settings,
where some observed consumption swings are efficient responses to changes in produc-
tivity, while others reflect barriers to risk-sharing. By avoiding the necessity of identifying
and separating these different sources of fluctuation, our sufficient statistics methodology
substantially reduces data and modeling assumptions.

The outline of the paper is as follows. In Section 2 we set up the preferences, tech-
nologies, and resource constraints. In Section 3, we define misallocation, and charac-
terize it exactly and approximately. The exact characterization shows how to convert
the problem of solving for misallocation into a utility-maximization problem for an as-
if representative agent with homothetic preferences. We show that the solution to this
particular representative-agent’s utility maximization problem yields the degree of mis-
allocation in the primitive economy. This then enables the use of tools and techniques
developed for studying single-agent economies to measure misallocation in this multi-
agent setting. This result, which is a consequence of Theorem 1 from Baqaee and Burstein
(2025b), shows that the as-if representative agent has Leontief preferences over the growth
in certainty-equivalent utilities of the households in the primitive model.

Our approximate characterization recasts misallocation in terms of deadweight loss
triangles. We show that each triangle depends only on the observed consumption allo-
cation, the input-output network (if there is one), and elasticities of substitution in con-
sumption and production. In particular, we do not need to model the productivity process
or to separate consumption fluctuations due to wedges and due to productivities.

In Section 4, we specialize these results by focusing on the case were households have
common preferences. This is relevant in a domestic or closed-economy setting, where all
agents can access the same common consumption bundle. In this case, we can simplify
both our exact and approximate characterization results. In this simplified setting, and
in the absence of labor-leisure choice and capital accumulation, our measure is simply
the certainty-equivalent of the aggregate endowment, which is uniquely defined since
all agents have the same preferences, divided by the sum of certainty-equivalents of all
households. In this special case, our measure is similar to the efficiency measure pro-
posed by Benabou (2002). However, we show that with either labor-leisure choice, capi-
tal accumulation, or preference heterogeneity, our measure differs. In fact, we show that
this with these additional ingredients, the Benabou (2002) measure has some counterin-
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tuitive properties — for example, it can prefer more inequality across households if there
is labor-leisure choice.

Our deadweight loss triangles formula takes an especially simple form in the set-
ting with a common consumption good. The height of each triangle is the log change
in each household’s share of the aggregate consumption basket over time divided by
the intertemporal elasticity of substitution. The base of each triangle is the gap between
each household’s share of consumption and the conditional expectation of the net present
value of its consumption share.

In Section 5, we apply our theoretical results to some quantitative and empirical ex-
amples. We begin using a calibrated Bewley (1972) model. We show that misallocation
losses are approximately 20%.1 Although this is a very high number, it is almost half as
big as the losses according to a behind-the-veil of ignorance measure that ignores ex-post
heterogeneity. We also conduct some sensitivity analysis showing how the distance to the
frontier changes as a function of the size of the idiosyncratic shocks, the amount of public
debt, and the size of the borrowing constraint. We show that our second-approximation
formula performs well in this model. We also consider how allowing for capital accumu-
lation alters our results. Capital accumulation introduces a new margin for distortions:
excessive savings due to the precautionary motive.

We then apply our second-order approximation to consumption panel data from the
PSID. In our benchmark specification, misallocation losses from incomplete risk-sharing
are also around 20%. Losses are greater, the lower is the intertemporal elasticity of sub-
stitution and the impatience parameter. To apply our deadweight loss triangles formula,
we must estimate the conditional expectation of the net present value of each household’s
share of aggregate consumption. To do this, we use a regression that conditions on house-
hold observables — for example, income, education, wealth, etc. We show that, as we
drop covariates from this regression, estimated losses from misallocation rise. Intuitively,
this is because with a less informative regression, we attribute some systematic differ-
ences between households to lack of risk-sharing rather than to differences in observable
household characteristics.

We end Section 5 by applying our second-order approximation formula to analyze
losses from the lack of international risk-sharing. We calibrate an Armington model of
world trade with 32 countries, 54 industries in each country, and input-output linkages.
We calibrate elasticities of substitution and apply our formula to a sample from 1970 to

1A related question studied by e.g. Lucas (1987), Atkeson and Phelan (1994), and Alvarez and Jermann
(2004), is the gains from eliminating fluctuations in aggregate consumption. Our counterfactual question
is different because we do not modify the process of aggregate consumption when financial markets are
completed.
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2019. We find misallocation losses roughly in the 5% range. That is, if financial mar-
kets were complete and every household was compensated to be indifferent to the initial
allocation, then there would be 5% of every consumption good left.

This result crucially depends on the fact that some countries in our sample, principally
China but some extent also India, experienced very rapid growth during the sample com-
pared to other countries. This means that there is significant unexploited gains from in-
tertemporal trade between countries. If we exclude the fast-growing countries, like China
and India, from our sample, then the misallocation losses drop to around 1%. We consider
sensitivity analysis and show, once again, that losses are higher if the intertemporal elas-
ticity of substitution is lower. We also show that losses are larger if the Armington trade
elasticity is higher. Intuitively, there are more unexploited opportunities to share risk and
smooth consumption, conditional on the data, if the foreign and domestic goods are more
substitutable.

Relation to companion papers. Although this paper is self-contained, it has two com-
panions. Baqaee and Burstein (2025b) provides a general framework for studying aggre-
gate efficiency with heterogeneous agents. Many of the results in this paper are therefore
applications of the general approach in that paper. In the other companion paper, Baqaee
and Burstein (2025a), we apply the the same framework to study changes in aggregate
efficiency in spatial economies with discrete choice and heterogeneous consumer tastes.

Additional related literature. This chapter is related to papers that analyze efficiency
properties of models with incomplete financial markets. There are two main branches of
this literature. The first branch is concerned with domestic risk-sharing of idiosyncratic
household-level risks in closed-economy settings. The second branch analyzes efficiency
of risk-sharing in an international context with nontraded goods. We discuss these two
branches of the literature in sequence.

The first branch derives from Bewley (1972), and its extensions including Imrohoroğlu
(1989), Huggett (1993), and Aiyagari (1994). To evaluate aggregate welfare in this class
of models, there are two common approaches in the literature. The first is to use a social
welfare function, typically by appealing to behind-the-veil of ignorance logic of Harsanyi
(1955).2 It is understood that social welfare functions, including the utilitarian behind-
the-veil one, embed some distributional judgement and require interpersonal compar-
isons. These measures are typically averse to efficient but unequal allocations across

2Some examples include Heathcote et al. (2008), Conesa et al. (2009), Dávila et al. (2012), Krueger et al.
(2016), and Boar and Midrigan (2022).
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households. The second approach, following Benabou (2002) and then Floden (2001),
aims to separate Pareto-efficiency considerations from redistributional ones. Instead of
aggregating individual consumptions or utilities, these measures sum up consumption
certainty-equivalents. Both of these approaches exploit the fact that all goods are trade-
able and that all households have the same preferences.

In the special cases where we impose both of these assumptions, our approach is more
closely related to the one taken by Benabou (2002). Specifically, we show that our defi-
nition of aggregate efficiency collapses to a measure similar to his as long as (1) there is
no capital accumulation, and (2) there is no labor-leisure choice. The typical approach in
this branch of the literature to dealing with these complications is to hold them fixed in
the calculation of certainty equivalents. We complement this prior work by adopting a
definition that accounts for inefficient capital accumulation and labor-leisure choice due
to imperfect risk-sharing.

However, even abstracting from both capital accumulation and labor-leisure choice,
our paper complements Benabou (2002) and the literature that followed it by providing
a second-order approximation of the efficiency losses from imperfect risk-sharing. Our
approximation formula, which is a Harberger (1954) triangles formula, requires only es-
timates of the EIS, the risk-free interest rate, and second moments of the household con-
sumption allocations. This allows us to approach the problem of quantifying misalloca-
tion with significantly weaker structural assumptions — not taking a stance for example
on the nature of financial market imperfections or households’ idiosyncratic income pro-
cesses.

Our focus is on the distance of the allocation from the Pareto frontier. This means that,
when financial markets completed, we allow for lump-sum transfers between households
to ensure everyone is compensated. Some papers in this literature, including Benabou
(2002), consider constrained efficiency and second best policies (with imperfect redistri-
bution). Although our framework can be applied to study such questions, we do not
pursue them in this version of the paper.3

The second branch of the risk-sharing literature focuses on the international dimen-
sion of the problem — taking seriously the fact that goods are non-tradeable. Some exam-
ples include Van Wincoop (1994), Gourinchas and Jeanne (2006), Fitzgerald (2012), Heath-

3Extending our approach to second best scenarios means that we would ask the same counterfactual
question to define aggregate efficiency, but use the restricted possibility set taking into account feasible
(potentially imperfect) transfers. This is related to Farhi and Werning (2012), who quantify the aggregate
welfare gains from capital taxation in an incomplete market model with private information, using the
resources saved when implementing the inverse Euler equation while holding labor decisions and utilities
unchanged. This is also related to the approach in Schulz et al. (2023) and Aguiar et al. (2024), who use a
Pareto improvement criterion rather than social welfare functions, to evaluate second-best policies.
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cote and Perri (2014), Fitzgerald (2024), Corsetti et al. (2024). In this literature, due to
non-tradeability, neither the behind-the-veil or sum of certainty-equivalents approaches
are justifiable, since the goods and preferences of different households are different. The
approach to quantifying inefficiency in this literature is more eclectic. Some papers as-
sume ex-ante symmetry, so that the aggregate gain from completing financial markets
is also symmetric. Some papers eschew aggregate comparisons and report country-by-
country results only. Lastly, some papers use Bergson (1954)-Samuelson (1983) social wel-
fare functions, typically a so-called utilitarian function. Of course, there are also papers
that analyze the efficiency properties of the decentralized aequilibrium, without quan-
tifying inefficiency per se, for example Cole and Obstfeld (1991) and Backus and Smith
(1993).

Our paper also contributes to this literature. Given the way we measure aggregate ef-
ficiency, we do not need to impose that countries be ex-ante symmetrical or to use a social
welfare function. Accordingly, our measure relaxes the unrealistic assumption of symme-
try while still eschewing interpersonal comparisons of utility and without taking a stance
on distributional questions. On a methodological front, we show that our second-order
approximation can be applied to the data without requiring that we model the productiv-
ity shocks that hit the economy. Instead, our second-order approximation requires only
data on input-output tables at one point in time, an estimate of the risk-free rate, time se-
ries information on consumption and real exchange rates for each country, and estimates
of elasticities of substitution in consumption and production.

Our paper is also related to recent work that provides approximate decompositions of
changes in aggregate welfare using social welfare functions, for example Bhandari et al.
(2021) and Dávila and Schaab (2022, 2023). Our paper is different because the measure
of aggregate efficiency we use is distinct from the measures used in these papers in two
ways. First, we do not specify a social welfare function. Second we define aggregate
efficiency exactly and not as part of an approximate decomposition of aggregate welfare.
This means that our measure can be integrated, allowing us to study the effect of large
changes and, that generically, it does not coincide with what is referred to as efficiency in
these papers.

Of course, our paper is also related to a different literature that studies the efficiency
consequences of misallocation, following Harberger (1954), and more recently, Restuccia
and Rogerson (2008) and Hsieh and Klenow (2009). From a methodological and concep-
tual point of view, our paper is very closely related to this literature, though we study
a very different type of misallocation. Whereas this literature typically emphasizes static
cross-sectional misallocation in production, we study dynamic stochastic misallocation in
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consumption. Notwithstanding this difference, our methodological approach is similar.
We analyze the distance to the Pareto-efficient frontier, we use reduced-form wedges to
capture the frictions in the decentralized equilibrium, and we repurpose the triangles for-
mulas developed by Baqaee and Farhi (2020) to study a very different class of problems.

2 Preferences, Technologies, and Resource Constraints

Below we introduce the preferences and the feasible set of allocations.

Households. Consider an economy populated by households indexed by h ∈ {1, ..., H}.
Household h has intertemporal preferences over state-contingent consumption streams ch

represented by the utility function

uh(ch) =
1

1 − 1/η ∑
s

π(s)
∞

∑
t=0

βtcht(s)
1− 1

η .

Here, cht(s) denotes consumption of household h at time t in state s (which may be an
h-specific homothetic bundle of many goods), the discount factor is β < 1, and η > 0
is the elasticity of intertemporal substitution (EIS). Since the consumption bundle may
vary across households, we are not imposing common preferences across households.4

The probability of state s is denoted by π(s), where each state s indexes a sample path of
shocks (productivities and wedges). We denote the time-zero expectation, using probabil-
ities π(s) for each sample path s using the operator E0. In our baseline model, we abstract
from labor-leisure choice and assume that labor is inelastically supplied. We extend our
results to allow for labor-leisure choice later.

Technologies. In every period, t, of every state s, there is a set F of primary factor en-
dowments and N of goods. The factors are inelastically supplied and owned by house-
holds, and used by producers in the same period (i.e. labor from t cannot be used by
producers in t + 1). Producer i ∈ N has a CES production function that uses intermedi-
ate inputs and primary factor endowments with elasticity of substitution θi. Hence, the

4As we discuss below, our measure of aggregate efficiency does not depend on how utility functions are
cardinalized.
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production function of i is

yit(s) = zit(s)

(
∑
j∈N

αij
(
yijt(s)

) θi−1
θi + ∑

f∈F
αi f
(
li f t(s)

) θi−1
θi

) θi
θi−1

,

where zi is a Hicks-neutral productivity shifter, and yijt(s) and li f t(s) are intermediate
input j and factor input f . The scalars αij and αi f are share parameters that affect expen-
ditures shares across inputs for each i.

Note that this structure is general enough to accommodate any pattern of nested-CES
producers. This model also accommodates any Armington-style model of trade, and the
productivity shifters, zit(s), for specialized intermediaries of imports and exports repre-
sent iceberg costs of trade.5 Without loss of generality, we treat the consumption bundle
of each household cht(s) as-if it is produced by one of the goods producers and order the
consumption goods first among the commodities in N.

The production structure above rules out capital accumulation by imposing that there
be no intertemporal intermediate inputs. Hence, for the time being, we assume that out-
put is non-storable and production functions in each period t rely only on intermediates
and primary factors from the same period. We consider capital accumulation only as an
extension.

Resource constraints. The resource constraints of the economy are as follows: con-
sumption of good h equals its production,

yht(s) = cht(s), (h ∈ H)

use of intermediate input i equals its production,

∑
j∈N

yjit(s) = yit(s), (i ∈ N, i /∈ H)

use of factor f equals its endowment

∑
j∈N

lj f t(s) = z f t(s), ( f ∈ F).

5This production structure is general enough to capture any nested-CES structure through re-labeling.
This is because we allow each producer to have a different elasticity of substitution across its inputs. See
Baqaee and Farhi (2019) and their discussion of the “stand-form” representation of nested-CES economies
for more details.
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Given these technologies and resource constraints, denote the dynamic consump-
tion possibility set of the economy by C(z), where z is the vector of all state-contingent
technology processes. That is, each element of C(z) is a vector of state-contingent con-
sumptions streams for every household. By the second welfare theorem, C(z) is the set
of perfectly competitive equilibria, with complete markets, given unrestricted lump-sum
transfers.

3 Quantifying and Characterization Misallocation

In this section, we define the measure of misallocation, and we provide exact and approx-
imate characterizations of it.

3.1 Definition of Misallocation

We specialize Definition 1 from Baqaee and Burstein (2025b) to this environment. Our
definition of aggregate efficiency here coincides with the one proposed by Debreu (1951,
1954). Let c0 be the state- and date-contingent consumption allocation that is the equi-
librium of some model with inefficient risk-sharing and financial frictions. We measure
misallocation due to imperfect consumption-smoothing across time and states in the fol-
lowing way.

Definition 1. Misallocation in c0 is

A(c0, C) ≡ max
{

ϕ ∈ R : there is c ∈ ϕ−1C and uh(ch) ≥ uh(c
0
h) for every h

}
.

We define the change in aggregate efficiency relative to the status-quo as

∆ log A(c0, C) = log A(c0, C)− log A(c0, c0) = log A(c0, C).

In words, misallocation is measured by the maximum contraction of the consumption
possibility set such that it is possible to keep every agent at least in different. The scalar
∆ log A measures how much of every consumption good (in every period and state) is
left over after every agent has been made indifferent. This is a measure of the total waste
of resources caused by market incompleteness and frictions. Importantly, we do not take
a stance on which agents would or should receive these extra resources if one were to
complete markets. That is, this aggregate efficiency measure is silent on redistributions.
If the initial consumption allocation is Pareto efficient, then ∆ log A is zero. Note that
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conditional on the status-quo allocation, c0, the nature of the specific financial frictions
that led to it are irrelevant for calculating ∆ log A (e.g. borrowing constraints, limited
commitment, incomplete assets, portfolio-choice frictions, etc.)

3.2 Exact Characterization

We use Theorem 1 from Baqaee and Burstein (2025b) to characterize ∆ log A as the solu-
tion to a representative-agent planning problem (which, by the first welfare theorem, can
also be viewed as the competitive equilibrium allocation of that fictitious representative-
agent economy).

Proposition 1 (Calculating misallocation via a planning problem). Misallocation in c0 is
the solution to the planning problem

A(c0, C(z)) = max
c∈C(z)

min
h∈H

{ũh(ch)} , (1)

where ũh(ch) =
[
uh(ch)/uh(c

0
h)
] η

η−1 .

This proposition converts the problem of calculating misallocation into one of maxi-
mizing utility for a fictional representative agent. This fictional representative agent has
Leontief preferences over growth in certainty-equivalent utilities of the households in the
real economy relative to status-quo. To see, this define the consumption-equivalent of a
consumption process ch = {cht(s)}t,s to be the function CEh(ch) that solves

uh(1CE) = uh(ch),

where 1 is constant process equal to one. In words, CE is the constant deterministic con-
sumption path that gives the same utility as ch. Then ũh(ch) = CEh(ch)/CEh(c

0
h) is the

growth in the certainty-equivalent consumption of household h.6 Solving the utility max-
imization in Proposition 1 is relatively straightforward, since it is a efficient representative
agent problem with homothetic CES preferences.7

The function minh∈H {ũh(ch)} in Proposition 1 is not a Rawlsian social welfare func-
tion. First, this function depends on the minimum change in certainty-equivalent utility,

6Proposition 1 is an application of Theorem 1 from Baqaee and Burstein (2025b). In Baqaee and Burstein
(2025b), the functions ũh are defined using the distance function, not certainty-equivalents. However, given
the additional assumptions in this chapter, ũh turns out to coincide with the ratio of certainty-equivalents.

7Proposition 1 applies without change even if we allowed households to have different discount fac-
tors, intertemporal elasticities of substitution, removed the CES assumption on production functions, and
allowed for capital accumulation.
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relative to the status-quo, whereas a Rawlsian social welfare function depends on the
minimum level of utility. Second, whereas the allocation that maximizes a social welfare
function is the optimal allocation, the allocation that maximizes (1) has no such interpre-
tation. Rather, it is simply an analytical device for measuring aggregate efficiency ∆ log A.
Indeed, we do not ever define the optimal allocation on the Pareto frontier.

3.3 Approximate Characterization

The exact characterization in Proposition 1 requires fully specifying the Pareto frontier,
including, for example, the productivity processes. In this subsection, we provide a
(second-order) approximation for misallocation that does not require as much informa-
tion to implement. To derive this approximation, we introduce the concept of an equi-
librium with wedges. We decentralize the status-quo allocation using household-specific
state- and date-contingent consumption taxes, and then apply Proposition 7 from Baqaee
and Burstein (2025b).

Denote the wedge, which is an implicit tax, on the consumption of household h at
time t in state s by µht(s). The intertemporal budget constraint for household h, in the
decentralization with wedges, is

∑
s

∑
t

qt(s)µht(s)pht(s)cht(s) ≤ Ih,

where qt(s) is the price of an Arrow security and pht(s) is the price of the consumption
good h in state s at time t not including the wedge, and Ih is initial wealth (including
factor endowments and revenues from the consumption tax wedges).

We now define general equilibrium with wedges. Since we are focusing only on mis-
allocation from incomplete markets for households, we abstract from other possible dis-
tortions for now and assume that firms set prices equal to marginal cost.

Definition 2 (Equilibrium with Wedges). A general equilibrium with wedges is the col-
lection of prices and quantities such that: (1) the price of each good i equals its marginal
cost of production; (2) each producer takes prices as given and chooses quantities to max-
imize profits; (3) each household chooses consumption quantities to maximize utility tak-
ing prices, consumption tax wedges, and income as given; (4) household h earns income
from primary factors and tax revenues; (5) all resource constraints are satisfied.

Since there are no intertemporal production linkages (i.e. capital accumulation) and
firms set prices equal to marginal cost, the allocation in each period is statically Pareto-
efficient. That is, holding fixed consumption allocations in every other period and state,
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and focusing only a single period and state, it is not possible to make one agent better off
without making someone worse off. However, the equilibrium allocation is not dynam-
ically Pareto-efficient since the state-contingent consumption taxes distort intertemporal
trade and insurance between agents.

The following proposition shows that any feasible consumption allocation that is the
equilibrium of a model with incomplete financial markets (and no other distortions) can
be decentralized using some pattern of household-state-date-specific consumption taxes.8

Proposition 2 (Decentralization with Wedges). Consider some feasible state-contingent con-
sumption allocation c0. Assume that for each period t and state s, the consumption vector {c0

ht(s)}h∈H

is statically efficient. Then, setting

log µht(s) = − 1
η
[log ωht(s)− log ωh0(s)] +

1 − η

η
[log pht(s)− log ph0] (2)

implies that c0 is a general equilibrium with those wedges, where pht(s) is the consumption price

and ωht(s) =
pht(s)c0

ht(s)
∑h′ ph′t(s)c

0
h′t(s)

is the expenditure share of household h in period t and state s. This

equilibrium is supported by some lump-sum transfers across households.

We do not need to specify the lump-sum transfers explicitly. For our purposes, all
that matters is that there exist an equilibrium with the wedges in (2), with appropriate
transfers, that can support c0 as an equilibrium allocation.9

Consider the relative wedge in a given date-state between households. Proposition 2
implies that

log
µht(s)
µh′t(s)

= − 1
η

[
log

ωht(s)
ωh0(s)

− log
ωh′t(s)
ωh′0(s)

]
+

1 − η

η

[
log

pht(s)
ph0

− log
ph′t(s)

ph′0

]
.

8The wedges in Proposition 2 are distinct from the wedges in Berger et al. (2023). They consider pref-
erence shifters that, in a representative agent economy, replicate the path of aggregate outcomes (e.g. ag-
gregate consumption, hours, etc.) from a heterogeneous agent New Keynesian model. They show that
deviations from perfect risk-sharing map onto discount factor shocks in the representative agent model.
They then consider the reduction in output volatility in the absence of these as-if discount factor shocks.
In contrast, the wedges in Proposition 2 replicate a microeconomic, rather than just aggregate, allocation in
a heterogeneous agent general equilibrium with wedges. We use these wedges to construct a Harberger-
triangle formula for incomplete market models.

9The wedges in (2) are not the only ones that can decentralize c0. For example, if wedges µht(s) are all
raised by the same proportion for every household h in a given t and s, this can still decentralize c0. That is,
Proposition 2 is a particular normalization of wedges that can decentralize the status-quo. In contrast, the
relative prices pht(s)/ph′t(s) in a given period and state across households are generically pinned down by
c0

ht(s) across households in that period and state. This is because production is statically efficient, and so
relative prices within a state-date are pinned down by marginal costs of producing each consumption good
efficiently (given that there are not intertemporal production linkages in the form of capital accumulation).
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If allocations are dynamically efficient, so that wedges are all equal to one, then house-
holds whose consumption prices are relatively high, should be spending relatively more
if η < 1. Indeed, setting wedges equal to one and rearranging yields the Backus and
Smith (1993) condition for efficient risk-sharing. In our international application, we refer
to log µht(s) as the Backus and Smith (1993) wedges.

There are two salient special cases: (1) if there is a common consumption good, then
pht(s) = ph′t(s), and the wedge depends only on fluctuations in consumption shares over
time. In this case, efficient risk-sharing requires that all households maintain a constant
share of aggregate consumption in every date and state. If one household’s share of con-
sumption rises, then it must be receiving an inefficient “subsidy” in that date and state.
(2) If η = 1, then once again, the efficient allocation features constant consumption expen-
diture shares over time. This is related to the observation by Cole and Obstfeld (1991) that
an economy with η = 1 and constant expenditure shares in equilibrium delivers efficient
risk-sharing even if there is financial autarky.

Given these wedges, we can now apply a version Proposition 7 from Baqaee and
Burstein (2025b) to this environment. To do so, denote the deviations of productivity
shifters from some constant values by ∆ log z. That is, for producer i at time t in state s,

∆ log zit(s) = log
zit(s)

zi
,

where zi is some constant (over time and states) level of productivity for producer i.
The following proposition approximates misallocation losses in terms of Harberger

deadweight loss triangles.

Proposition 3 (Harberger triangles with incomplete markets). Misallocation comparing the
status-quo allocation c0 to the Pareto-frontier C(z) is approximately

∆ log A ≈ 1
2

E0

[
∞

∑
t=0

r
(1 + r)t+1 ∑

h∈H
ωh log µht(s) ∑

h′∈H
Ahh′ [log µh′t(s)− log µ̄h]

]
,

where log µht(s) is given by Proposition 2, log µ̄h = E0[∑∞
t=0

r
(1+r)t+1 log µht(s)|h] is the ex-

pected discounted consumption wedge for household h, ωh is the expenditure share of household
h at any date or state, r is the riskfree rate at any date or state, and Ahh′ depends only on the
static input-output matrix and elasticities of substitution (including η). The approximation error
is order logµ3 and logµ2∆ log z.

The explicit formula for the H × H matrix A in terms of the input-output table and
elasticities of substitution is given in the appendix. The key is that the matrix A does
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not depend on either the date or the state. This simplicity comes from the fact that the
production possibility set within each date and state is not a function of past choices
because there is no capital accumulation.10

Proposition 3 is a sufficient statistics formula: misallocation can be approximated con-
ditional on knowledge of the (static) input-output table at some date, elasticities of sub-
stitution (include η), the discount factor β, and wedges, log µht(s), which are recoverable
from Proposition 2. Importantly, one does not need know the process driving productiv-
ity shocks ∆ log z.

4 Risk-Sharing with Common Consumption Good

We now apply our exact and approximate characterizations, Propositions 1 and 3, to a
salient special case. We focus our attention on the case where all households consume
the same consumption good. This is the typical assumption in closed-economy settings,
and making it allows us to provide sharper and more intuitive versions of Propositions 1
and 3.

The fact that there is only one consumption good in each date and state means all
household’s have the same preferences. This assumption nests economies that have a
single consumption good in every period, like Bewley (1972) and Huggett (1993), but it
also accommodates multi-sector versions of these models with input-output linkages, as
long as every household’s static consumption aggregator is the same.

We begin this section by considering the baseline case without either labor-leisure
choice or capital accumulation, and we specialize the exact and approximate characteri-
zations above to this setting.

4.1 Baseline without Capital Accumulation or Labor-Leisure Choice

We start by specializing our exact characterization of misallocation due to market incom-
pleteness to this setting. We then contrast our measure with the popular behind-the-
veil-of-ignorance social welfare function (sometimes called “the utilitarian” social welfare
function). We end by providing a second-order approximation of misallocation stated in
terms of some observable sufficient statistics.

10The derivation of Proposition 3 uses Proposition 7 from Baqaee and Burstein (2025b) and shows that the
term ∑h′∈H Ahh′ [log µh′t(s)− log µ̄h] is the first-order change in log cht(s) due to wedges in the compensated
equilibrium with wedges. There is one other subtlety relative to Proposition 7, which is that we assume
productivity shifters are close to some constant baseline values through time — i.e. the approximation
error is order ∆ log z log µ2.
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Exact characterization. Given the assumption that all households consume the same
static bundle, we can simplify Proposition 1 further. To do so, recall that CE(ch) is the
certainty-equivalent of the consumption process ch.11

Proposition 4 (Misallocation in economies with common consumption good). Consider
the special case where there is a common consumption good in every period and state. In this case,
misallocation is

∆ log A = log
CE(C0)

∑h CE(c0
h)

. (3)

where C0
t (s) = ∑h c0

ht(s) is the status-quo aggregate quantity of the consumption good in period
t and state s.

In words, when households have common preferences, ∆ log A is the certainty equiva-
lent of the status-quo aggregate consumption process (evaluated using households’ com-
mon preferences) relative to the sum of the consumption equivalents of each households’
consumption process.12

To derive Proposition 4, we use the observation that all consumption allocations on the
Pareto frontier satisfy cht(s) = λhCt(s) for some household-specific λh with ∑h λh = 1.
This follows from homotheticity of preferences and the fact that aggregate consumption
quantity Ct(s) is efficient. Substituting this into (1), we get

∆ log A = max
c∈C(z)

min
h∈H

{ũh(ch)} = max
c∈C(z)

min
h∈H

{
λhCE(C0)

CE(c0
h)

}
.

We know that utility-maximizing choice above must satisfy λhCE(C0)

CE(c0
h)

=
λh′CE(C0)

CE(c0
h′ )

. Hence,

λh =
CE(c0

h)

∑h′ CE(c0
h′)

.

Substituting this back in gives the desired result. This proposition is no longer true if
either (1) there is preference heterogeneity, (2) labor-leisure choice, or (3) capital accumu-
lation, as we discuss below.

By inspection, under these assumptions, ∆ log A, also coincides with Kaldor-Hicks
efficiency, defined as the ratio of aggregate income in first best relative to the sum of

11Using the functional form for utility and solving through, we can write CE(ch) =(
u(ch)(1 − β)(1 − 1

η )
) η

η−1 .
12If there are static production inefficiencies, then the numerator of (3) should be replaced by CE(C∗),

where C∗ is the aggregate consumption process in the undistorted equilibrium (which is unique, because
all households have the same homothetic preferences).
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compensating variations of the status-quo (the amount of money each household must
be given under complete markets to ensure indifferent to their status quo allocation).
As we discussed in Baqaee and Burstein (2025b), this equivalence between ∆ log A and
Kaldor-Hicks efficiency breaks down in the presence of preference heterogeneity or non-
homotheticity.

Proposition 4 shows that ∆ log A is related to the measures of inefficiency proposed
by Benabou (2002) and Floden (2001). Relative to those papers, Proposition 4 allows for
aggregate shocks and intermediate inputs. More generally, once we depart from the com-
mon preferences assumption or allow for consumption-leisure choice or capital accumu-
lation, then ∆ log A no longer coincides with the metrics discussed in those papers.

Contrast to the veil-of-ignorance. A popular measure in the literature is the veil-of-
ignorance social welfare function. When all households have common preferences, as we
are assuming in this section, this measure is unambiguous to define.13 Whereas our mea-
sure is designed to ignore inequality, a primary motivation for the veil-of-ignorance mea-
sure is to capture inequality-aversion using risk-preferences. Define the veil-of-ignorance
consumption-equivalent of a consumption allocation c to be:

u(1CEVOI) = ∑
h∈H

1
H

u(c0
h).

In words, CEVOI is the consumption-equivalent of a population-weighted lottery of the
consumption allocation of each agent in the equilibrium. Using this as a social welfare
function, we can calculate the difference between the value of the first-best allocation,
according to this social welfare function, and the value of the status-quo allocation:

∆ log AVOI = log
CE(C0/H)

CEVOI = log
CE(C0)(

∑h
(
CE(c0

h)
) η−1

η

) η
η−1

, (4)

where the numerator uses the fact that the first-best allocation with this social welfare
function would split aggregate consumption uniformly across all agents. Comparing
(3) to (4) clarifies some of the differences between ∆ log A and ∆ log AVOI . The veil-of-
ignorance measure, ∆ log AVOI , uses risk-preferences to discipline inequality-aversion,

13See Eden (2020) for a detailed discussion of the veil-of-ignorance approach to quantifying social welfare,
and how it must be adapted in the presence of heterogeneous preferences.
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whereas ∆ log A does not feature this effect.14,15

The simplest way to see the difference between ∆ log A and ∆ log AVOI is to consider a
Pareto efficient, but unequal, consumption allocation. Suppose that in the status-quo,
each household consumes a constant fraction λh of aggregate consumption: c0

ht(s) =

λhC0
t (s). In this case, the consumption-equivalent is a fraction λh of the consumption-

equivalent for aggregate consumption: CE(ch) = λhCE(C0). Using Proposition 4, it
follows that misallocation is zero. However, as there is inequality in the status-quo (λh

varies across households), ∆ log AVOI is positive (unless η = ∞ and households are risk-
neutral).

Approximate characterization of ∆ log A. We now provide a second-order approxima-
tion of misallocation. This second-order approximation serves several purposes. First, it
provides some useful intuition about how parameters affect misallocation. Second, and
more importantly, it identifies some approximate sufficient statistics that can be taken to
the data without assuming complete knowledge of the entire distribution of consumption
allocations and productivity shifters.

The following proposition specializes Proposition 3 to the special case where there is
a common per-period consumption good.

Proposition 5 (Harberger triangles with common consumption good). Consider the spe-
cial case where there is a common consumption good in every period and state. Misallocation is
approximately equal to

∆ log A(c0, C(z)) ≈ −1
2

1
η

E0

[
∞

∑
t=0

r
(1 + r)t+1 ∑

h
ωh (log ωht(s)− log ωh0) (log ωht(s)− log ω̄h)

]
,

where log ω̄h = rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s′)|h
]

is the conditional expected discounted

consumption share of household h. The approximation error is order log µ3 and ∆ log z log µ2.

14In other words, the veil-of-ignorance measures sets the Atkinson (1970) parameter for inequality-
aversion equal to the coefficient of relative risk aversion.

15In this example, the veil of ignorance can also be thought of as a utilitarian social welfare function (sum
of utilities) with a particular cardinalization of the utility function. However, with other cardinalizations of
the same preferences, the sum of utilities will have different implications. This is because “the” utilitarian
welfare function is not well-defined as it depends on how each utility function is cardinalized. For example,
if instead of using the functional-form of u, defined above, we cardinalize the same preferences using the

monotone nonlinear transformation (u(1 − 1/η))
η

η−1 =

(
E0 ∑∞

t=0 βtc
1− 1

η

ht

) η
η−1

, then the utilitarian social

welfare function would have zero inequality aversion. We note that our measure of aggregate efficiency,
∆ log A, does not depend on how utility functions are cardinalized.
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This approximation is accurate as long as the wedges (log µ) and aggregate produc-
tivity shocks (∆ log z) are not too big. The intuition for the expression above is exactly
the same as the traditional deadweight-loss triangle logic. The height of the triangle is
measured by the wedge, log µht(s) = − 1

η [log ωht(s) − log ωh0] from Proposition 2. The
smaller is the EIS, the larger is the implied wedge necessary to reach the same distorted
quantity allocation. The base of the triangle is the gap between household h’s share of
consumption in state s and time t, ωht(s), and its expected share of consumption in net-
present value terms. The area of the triangle divides the product of the base and the
height, and the summation over t, h, and the expectation operator, sum over all dead-
weight loss triangles using net-present-value Domar weights.

An important difference between Proposition 5 and the classic deadweight loss tri-
angle formulas, like the ones in Baqaee and Farhi (2020), is that here there is no repre-
sentative agent. However, Proposition 1 shows that there is an as-if representative agent,
whose utility values coincide with ∆ log A. It is the allocation that this as-if representative
agent selects on the Pareto frontier that is then used for the construction of the Harberger
triangles. It is important to stress that in our context there is no single “first-best” alloca-
tion. That is, there is no implication that in the absence of wedges, the first-best allocation
is the one that sets ωht(s) = log ω̄h. In the absence of wedges, there are many different al-
locations that are all Pareto dominant to the status-quo, and our measure takes no stance
on which one is socially desirable. Instead, because of Proposition 1, ωht(s) = log ω̄h is
the allocation relative to which the necessary Harberger triangles must be computed if
one wishes to recover an approximation of ∆ log A.

4.2 Extension with Labor-Leisure Choice

We now briefly consider an extension with labor-leisure choice. Suppose households have
preferences over consumption and leisure

u(ch, lh) = E0

∞

∑
t=0

βtv(cht(s), lht(s)).

Each household has a unit endowment of time, which they devote either to leisure, lht(s),
or to work, 1 − lht(s). For simplicity, in this extension, we abstract from input-output
linkages and assume that labor can be directly converted into the common consumption
good using a linear technology. Hence, the resource constraint for consumption at date t
in state s is

∑
h

cht(s) = ∑
h

zht(s) (1 − lht(s)) , (5)
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where zht(s) is the idiosyncratic productivity of household h in date t and state s.
The consumption possibility set C(z) now consists of all consumption and leisure pro-

cesses that are consistent with the resource constraint above. This is because leisure is an
additional consumption good in preferences that must be accounted for. However, un-
like the consumption good, leisure is not tradeable across households. We use the same
definition of aggregate efficiency as in Definition 1. In words, misallocation is measured
by the maximum contraction of the consumption possibility set such that it is possible to
keep every agent at least in different. The scalar ∆ log A measures how much of every
consumption good, including leisure, in every state and date is left over after every agent
has been made indifferent.16 This is a measure of the total waste of resources caused by
market incompleteness and frictions.

Following Definition 2 from Baqaee and Burstein (2025b), define the homothetized
utility function ũh(ch, lh), implicity by the equation

u(c0
h, l0h) = E0

∞

∑
t=0

βtv
(

cht(s)
ũ

,
lht(s)

ũ

)
. (6)

Note that when applied to the preferences without leisure, the definition of ũh above
coincides with the one in Proposition 1.

Proposition 6 (Misallocation with leisure choice). Proposition 1 holds with labor-leisure choice
using the definition of ũh in Equation (6). Specifically, this means

∆ log A = max
c,l

ũh(ch, lh),

subject to (5) and ũh = ũh′ for every h′ ∈ H.

Proposition 6 is a restatement of Theorem 1 from Baqaee and Burstein (2025b). Propo-
sition 6 gives a method for calculating aggregate efficiency by converting the problem
into a standard utility maximization problem with a representative agent. The as-if rep-
resentative agent’s preferences are Leontief over ũh. We provide some examples of ũh for
popular functional forms below.

Example 1 (Homothetic preferences). If the intratemporal utility function, v, is homoge-

16Reducing leisure here does not mean we increase work — a proportional reduction in consumption and
leisure could instead be achieved by reducing every household’s time endowment by the same fraction.
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neous of degree 1 − 1/η, then ũh has a simple explicit form:

ũh(ch, lh) =

[
u(ch, lh)
u(c0

h, l0h)

] 1
1−1/η

.

A salient example is when the within period utility function takes the form:

v(ch, lh) =
1

1 − 1/η

[
cγ

h l1−γ
h

]1− 1
η . (7)

In many macro applications with labor-leisure choice, the within-period utility func-
tion, v, is not homogeneous of degree one in leisure and consumption. In this case, an
explicit representation of ũh may not be possible.

Example 2 (MaCurdy preferences). A very popular class of preferences uses

v(ch, lh) =
1

1 − 1/η
c

1− 1
η

h + ϕ0l1−1/ϕ
h . (8)

In this case, ũ is implicitly defined by the equation

ũh =

(
1
u0

h
E0

[
∞

∑
t=0

βt

(
cht(s)

1− 1
η

1 − 1/η
+ ũ1/ϕ−1/η

h ϕ0lht(s)1−1/ϕ

)]) η
η−1

.

We can solve for ũh explicitly only if ϕ = η.

Given ũh, solving for ∆ log A is a matter of solving a standard representative agent utility
maximization problem.

Comparison with Benabou (2002) measure of aggregate efficiency. As mentioned ear-
lier, our definition of aggregate efficiency is different to a frequently used alternative in
this literature, like Benabou (2002), Floden (2001) and Boar and Midrigan (2022), if house-
holds choose between labor and leisure. To compare two allocations, the literature fol-
lowing Benabou (2002) defines the consumption-equivalent of a consumption process ch

and a leisure process lh to be the function CE(ch, lh) that solves

u(1CE,1l̄) = u(ch, lh),
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where l̄ is some fixed level of leisure (e.g. average leisure). This efficiency of allocation is
defined by ∑h CE(ch, lh). Unlike our measure, this is a social welfare function (since it is
a monotone increasing function of the underlying preferences of the households).

To understand how this measure differs from ∆ log A consider the value it assigns to
different allocations on the Pareto frontier in the following simple example. Suppose that
preferences take the functional form in Example 1. In this case, this measure of efficiency
can be written as

∑
h

CE(ch, lh) = constant × ∑
h

(
u(c1

h, l1h)
) η

(η−1)γ .

Consider the simple case where labor productivity is equal to one in every date and state
for every agent. Then we can show that for every allocation (c, l) on the Pareto frontier,
there exist a set of numbers on the unit simplex, {α ≥ 0 : ∑h αh = 1}, such that

∑
h

CEh(ch, lh) = constant × ∑
h

α
1
γ

h . (9)

In this expression, α are coordinates of the Pareto frontier — i.e. they can be interpreted
like Pareto weights — the higher is αh for household h, the higher is the utility of that
agent. Clearly, unless γ = 1, and there is no labor-leisure choice, (9) assigns different val-
ues to different points on the Pareto-frontier. Surprisingly, this measure assigns (weakly)
higher values to more unequal Pareto weights since γ ≤ 1. Indeed, by continuity, this
shows that there are Pareto-inefficient allocations that receive a higher value according
to this measure than alternative Pareto efficient allocations with less inequality. There-
fore, once we have labor-leisure choice, this measure is not neutral with respect to pure
redistributions (and indeed, prefers inequality). In contrast, our measure of aggregate
efficiency, assigns a single value to the whole Pareto frontier by construction.

4.3 Extension with Capital Accumulation

We now consider an extension with capital accumulation along the lines of Aiyagari
(1994). For simplicity, in this extension, we abstract from input-output linkages and as-
sume that there is an aggregate output good in each period and labor is inelastically sup-
plied. Aggregate output in each period and state is

yt(s) = zt(s)kt(s)α, (10)
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where we imposed the requirement that the aggregate endowment of labor is equal to
one. Capital accumulation satisfies

kt+1(s) = (1 − δ)kt(s) + xt(s), (11)

where xt(s) is investment. Denote the initial capital stock by k0. The aggregate resource
constraint for output is

yt(s) = ct(s) + xt(s) = ∑
h∈H

cht(s) + xt(s). (12)

Proposition 1 continues to hold with capital accumulation. Specifically, this means

∆ log A = max
c

(
u(ch)

u(c0
h)

) η
η−1

,

subject to (10), (11), (12), and u(ch)

u(c0
h)

=
u(ch′ )

u(c0
h′ )

for every h′ ∈ H and some initial capital stock

k0. This implies the following.

Proposition 7 (Misallocation with capital accumulation). Let C∗
t (s) be the optimal (aggre-

gate) consumption choice of a representative agent in the neoclassical growth model with initial
capital stock k0. Then

∆ log A = log
CE(C∗)

∑h CE(c0
h)

. (13)

That is, computing ∆ log A requires knowing the consumption-equivalent welfare of
each agent in the status-quo as well as the certainty-equivalent of a representative agent
given the initial aggregate capital stock. Compared to Proposition 4, this means calcu-
lating aggregate efficiency, ∆ log A, above has one more step: solving for the transition
dynamics in a standard neoclassical growth model given k0.

Comparison with Benabou (2002) measure of aggregate efficiency. As with labor-leisure
choice, once we account for capital accumulation, our measure of efficiency differs from
the approach in Benabou (2002). That measure holds the aggregate capital stock fixed
when calculating consumption equivalents for each household, and values allocations by
summing up consumption equivalents. However, when there is idiosyncratic risk, house-
holds collectively accumulate too many assets relative to the Pareto frontier. Our measure
accounts for this, hence, the distance to the Pareto efficient frontier is larger according to
∆ log A than is implied by the sum of consumption-equivalents in Benabou (2002).
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5 Quantitative Applications

In this section, we apply the results in the previous section to some examples. In Sec-
tion 5.1, we quantify misallocation exactly in calibrated versions of the Bewley (1972)-
Aiyagari (1994) model and test the performance of our second-order approximation in
finite sample and with non-infinitesimal shocks. In Section 5.2, we apply our second-
order approximation sufficient statistics formula to household consumption panel survey
data for the United States to estimate misallocation from the absence of complete financial
markets. In Section 5.3, we use our second-order approximation to quantify misallocation
in the global economy due to incomplete international financial markets.

5.1 Misallocation in Bewley (1972)-Style Models

In this application, we quantify misallocation in a standard calibration of Bewley (1972).
We use this example to show how the extent misallocation, relative to the status-quo
steady-state equilibrium, changes as a function of parameters like idiosyncratic risk, bor-
rowing constraints, and public debt. We also use this example to test the performance of
our second-order approximation and its finite sample properties. We end this application
by considering an extension with capital accumulation as in Aiyagari (1994).

Model. There is a unit mass of households, indexed by h ∈ [0, 1], with preferences

uh(ch) =
1

1 − 1/η
E0

[
∞

∑
t=0

βtcht(s)
1− 1

η

]
.

that maximize utility subject to a per-period budget constraint

cht + aht+1 = (1 − τ)eht + (1 + rt)aht,

where aht is the quantity of a risk free bond held by h, eht is labor income, and τ is the tax
rate. Each household faces a borrowing constraint

a ≥ −a.

Labor is converted into the single consumption good one-for-one and the real wage is
equal to one. Income evolves according to

log eht = ρ log eht−1 + σϵht,
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where ϵht is an idiosyncratic Gaussian disturbance. The government has issued B risk
free bonds and runs a balanced budget every period using labor income taxes, so that

rB = τ.

Market clearing condition for goods and bonds is

∫ 1

0
chtdh = 1, and

∫ 1

0
ahtdh = B.

Calibration. We use a quarterly calibration. We set quarterly persistence of log income
to be ρ = 0.975 with standard deviation 0.1555 to match estimates of the quarterly per-
sistence and the cross-sectional standard deviation of the persistent component of log
income in the United States.17 We set the borrowing limit to be −5, so households can
borrow at most 5 times their quarterly income. We set the annual risk-free r = 3% (so the
quarterly rate is 0.75%). We set the EIS η = 0.5. Finally, we set B = 5.6 — so that total
bonds outstanding relative to quarterly output is 560% (or 140% of annual GDP).

Results. Figure 1 plots the extent of misallocation, calculated using Proposition 4, and
compares it to the second-order approximation from Proposition 5, using the steady-state
invariant distribution for the status-quo allocation. The approximation performs well
and, as expected, becomes exact as σ → 0. The benchmark values are indicated by the
dashed black line, where misallocation is approximately 0.22. This means that if agents
perfectly insure each other and everyone is kept indifferent to their status-quo alloca-
tion, then there is 22 log points (or 24% percentage points) of output left over to be split
across agents as desired. For comparison, we also compare the status-quo allocation to the
first-best allocation under the veil-of-ignorance criteria, using equation (4). The veil-of-
ignorance measure, which penalizes inequality across agents analogously to uncertainty
for each agent, assigns roughly double the losses to the status-quo. That is, behind the
veil, households would be prepared to give up 38 log points of aggregate consumption if
they could equalize consumption across dates, states, and the cross-sectional population.

Figure 2 plots the quality of the second-order approximation against the exact misallo-
cation losses as the sample length used in the approximation increases. The second-order
approximation stabilizes after about 100 quarters (25 years), but suffers from some small
sample bias when the number quarters is significantly shorter than that. The second-

17We target a cross-sectional standard deviation of log income equal to 0.7, which means that the standard
deviation to the innovations must be σ = 0.7 ×

√
1 − 0.9752.
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Figure 1: Losses as a function of idiosyncratic income risk. Dashed line is benchmark.

order approximation systematically underestimates the extent of misallocation because
the Harberger triangles in the first few periods are, by construction, equal to zero.18
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Figure 2: Quality of approximation for benchmark calibration

Figure 3 plots misallocation, relative to the status-quo in the invariant distribution, as
a function of the aggregate supply of bonds and the borrowing limit. In both cases, misal-
location falls mildly as the borrowing limit is increased and as the supply of bonds rises.
The approximation continues to perform well. It is important to note that, as we change
parameters, the invariant distribution changes — hence, in plotting these curves, we are
not holding fixed the status-quo allocation. So, for example, if misallocation falls from
0.21 at benchmark to 0.19 when aggregate bond supply is doubled, this does not imply
that aggregate efficiency rises by 0.22 − 0.19 ≈ 0.03 when bond supply is doubled. To
answer this question, using Definition 1, we would have to specify the distributive tools
available to society, which would give rise to a consumption possibility frontier C(B),
hold fixed the status-quo allocation at B = 5.6, and solve the problem in Proposition 1.

18The second-order approximation is much less sensitive to the number of households in the sample.
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Figure 3: Misallocation as a function of parameters (dashed line is benchmark).

Extension with labor-leisure choice. We use the results in Section 4.2 to extend the
model to include labor-leisure. We assume preferences take the form in (8). We calibrate
the EIS and the Frisch elasticity of labor supply to equal η = ϕ = 0.5, and set ϕ0 so that
leisure is, on average, equal to 40% of the time endowment. We re-calibrate the produc-
tivity process so that the standard deviation and persistence of the equilibrium income
process with endogenous leisure coincides with that in the model with no leisure. The
remaining parameters the same as in the benchmark calibration. The losses are shown in
Figure 4 as a function of idiosyncratic risk σ. Even as σ goes to zero, the losses are non-
zero since there is a tax on labor. However, this effect is small because the baseline tax rate
is small. Misallocation for the baseline parameters is 15 log points, which is smaller than
in the model without leisure because goods consumption only accounts for a fraction of
total spending on consumptions and leisure.

As before, we also compare the losses to those implied by a money-metric veil-of-
ignorance measure.19 As expected, the veil-of-ignorance measure assigns a bigger degree
of misallocation compared to first-best as compared to our measure.

19Concretely, the veil-of-ignorance loss is

∆ log

(
∑h u1

h

∑h u0
h

) η
η−1

,

where u1
h and u0

h are the first-best (behind the veil) and status-quo intertemporal utilities of agent h. In
words, this is the (log change) in wealth required to go from the indifference curve ∑h u0

h to ∑h u1
h. Since

preferences are homothetic, this is also the proportional increase in a given commodity bundle (consump-
tion and leisure bundle) required to go from one indifference curve to the other as in Lucas (1987). In this
sense, its magnitude is comparable to ∆ log A, which is also stated in terms of proportional changes in the
set of feasible commodity bundles.
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Figure 4: Losses with labor-leisure choice as a function of idiosyncratic income risk.
Dashed line is σ in original calibration.

Extension with capital. With endogenous capital accumulation, incomplete risk-sharing
results in excessive saving relative to first best. This means that the steady-state status-
quo allocation has an inefficiently high stock of capital (the steady-state capital stock in
every allocation on the Pareto frontier is lower than the steady-state capital stock in status-
quo). To study the importance of this effect, we alter the baseline model along the lines of
Section 4.3. Below, we describe the equilibrium that determines the status-quo.

Household preferences are the same as before, but the per-period budget constraint is
now

cht + xht = eht + Rtkht,

where xht is investment by household h and Rt is the rental price of capital. Each house-
hold faces a borrowing constraint, so kht ≥ 0. The labor income process is the same as
before. Each household’s capital stock follows

kht+1 = (1 − δ)kht + xht

The aggregate resource constraints are as in (10)-(12). Aggregate output is produced
by a perfectly competitive representative firm that hires labor and capital on competitive
spot markets. The rental rate of capital clears the capital market:

∫ 1
0 khtdh = kt.

We calibrate capital’s share of GDP to be α = 0.35 and calibrate δ to match a capital
output ratio of 14. We keep ρ, σ, and β the same as in the benchmark Bewley calibration,
which means that the annual interest rate is 4.4% in the benchmark calibration.

We calculate distance to the frontier, ∆ log A, using (13). The results are plotted in
Figure 5 as a function of idiosyncratic risk. Misallocation at the benchmark values is 15.7
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log points. This number should not be compared to the one in Figure 1 since we did
not recalibrate the model to keep the volatility of consumption the same across the two
models.

As is well-known, in this Aiyagari (1994) environment, households overinvest in cap-
ital relative to the first-best allocation. When financial markets are complete, households
dissave since they no longer have a precautionary motive. This means that the long-run
steady-state capital stock is lower at the Pareto frontier.

To quantify the importance of overinvestment for misallocation, we compare the bench-
mark distance to the frontier with one where we impose that the capital stock remains
constant — that is, we use equation (3) rather than (13). As expected, the distance to
the frontier holding the capital stock constant is smaller than the distance to the frontier
allowing the capital stock to adjust — and the gap grows as idiosyncratic risk, and the
strength of the precautionary motive, rise. At the benchmark values however, this effect
is relatively mild, raising misallocation losses from 14.5 log points to 15.7 log points.
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Figure 5: Losses as a function of idiosyncratic income risk. Dashed line is σ in original
calibration.

5.2 Misallocation in PSID

In this application, we quantify misallocation from the lack of complete domestic insur-
ance markets in the United States. We study how much consumption (in every date and
state) is left over if domestic insurance markets work perfectly and every household is
kept indifferent relative to their status-quo allocation. The larger is this number, the
greater is the extent of misallocation from incomplete risk-sharing in the status-quo. Re-
call that the status-quo allocation is not consumption in the first period, but it is the state-
and date-contingent equilibrium consumption processes for each household starting in
the first period.
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Approach. We use Proposition 5 to examine the extent of misallocation. In particular,
we assume the data arise from an economy that meets the assumptions laid out in Section
4 — that is, every household has the same static consumption aggregator, and production
is efficient in a static sense, but consumption allocations may be Pareto inefficient over
time or across different states of nature.20

The key benefit of using the second-order approximation in Proposition 5, instead of
specifying a fully detailed structural model and applying the exact outcome in Proposi-
tion 1, is that it imposes far lower informational requirements. Proposition 5 can be ap-
plied without needing to specify any particular stochastic process for either the wedges
or the productivity shifts.

Description of data. We use the Panel Study of Income Dynamics (PSID) which is a lon-
gitudinal panel survey of American households. We use a balanced panel of households
from 1999 to 2021 with 2, 096 households. We use household consumption expenditures
across six consumption categories collected once every two years. These categories are
food (at home and away), child care, healthcare, education, transportation, and housing.
We leave out other expenditure categories (like clothing and electronics) which are not
collected in every wave. Housing expenditures do not measure owner-occupied rental
value for home owners, so we use the methodology in Baqaee et al. (2024). That is, we
regress rent on observables for non-owners, and then use the estimates to predict rents
for home-owners.

Mapping data to terms in Proposition 5. To apply Proposition 5, specify the EIS η =

0.5 and the risk-free rate r = 0.03. We use household h’s share of total consumption
expenditures in 1999 to calibrate ωh.21 We perform sensitivity analysis with respect to
these choices when we present our results.

To estimate log ω̄h = rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s′)|h
]

, the expected discounted
consumption share of household h, we run a regression of household h’s consumption
share in period t on its initial consumption share (in 1999), and a vector of household-

20In particular, this means that we abstract from labor-leisure choice at the individual, and net capital
accumulation at the aggregate level.

21We experimented with using contemporaneous shares ωht every period instead of freezing them in
1999 and the results are very similar.
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level covariates.22

log ωht = γt log(ωh0) +ψtXh0 + ϵht. (14)

The estimated regression equation is the best linear predictor of household h’s consump-
tion share at t conditional on observables at date 0 (1999). We use this linear predictor
in place of the conditional expectation in the formulas (i.e. in place of the best nonlinear
predictor). Hence, to calculate log ω̄h = rE0

[
∑∞

t=0(1 + r)−(t+1) log ωht(s′)|h
]

we predict
household h’s consumption share at each horizon t and sum them up discounted using
r = 0.03. Because we do not observe all terms in the infinite sums for present value cal-
culations, we treat unobserved terms as equal to the last observed value. As shown in
Figure 2, this imputation does reasonably well in small sample settings.

Results. Figure 6 plots estimated misallocation losses in the PSID as a function of the
annual interest rate. Our benchmark interest rate of 3% implies that misallocation is 23
log points (roughly 20%). This is in the same ballpark as the calibrated Bewley (1972)
model in Section 5.1. Estimated misallocation decreases as the risk-free rate, or degree
of impatience, rises. This is because deadweight loss triangles in the future are more
heavily discounted. In the limit, as r → ∞, households are infinitely impatient, there is
no possibility to share risk, and misallocation is zero.
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Figure 6: Estimated misallocation in PSID. Dashed line is benchmark.

Recall, from the discussion following Proposition 5, that the base of each deadweight
loss triangle is the gap between household h’s share of consumption in state s and time

22The covariates are household wealth without home equity, state of residence, household size, home
ownership status (0 or 1), household head’s age, race, ethnicity, and college degree status, business assets
of the head and spouse, household head’s labor income, and spouse’s labor income.
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t, ωht(s), and its expected share of consumption in net-present value terms. To estimate
this conditional expectation for each household, we rely on the regression in (14).

Table 1 shows how estimates of misallocation change as we drop covariates from this
regression. As the regression becomes less informative, estimated misallocation rises. In-
tuitively, this is because with a less informative regression, we attribute some systematic
differences between households to lack of risk-sharing rather than to differences in ob-
servable household characteristics. In other words, once the regression model stops con-
trolling for certain variables, previously explained variation in consumption shares now
appears as evidence of incomplete insurance, artificially inflating the measured misallo-
cation. This upward bias in estimated misallocation can be large: including no additional
controls besides initial consumption, causes the estimate to rise from 0.23 to 0.28.

Eliminated variable Estimated misallocation

None (Baseline) 0.227
Spouse labor income 0.239
Household head labor income 0.240
Business assets (household & spouse) 0.239
Household head college degree 0.247
Household head race and ethnicity 0.252
Household head age 0.260
Renter status 0.262
Household size 0.267
State of residence 0.279
Wealth 0.279

Table 1: Estimated misallocation under the baseline calibration with annual interest rate
r = 0.03. The top row includes all covariates; each subsequent row eliminates one addi-
tional covariate (e.g., the third row excludes both spouse and head labor income).

5.3 Misallocation in Open-Economy Production Networks

In our final application, we quantify misallocation from the lack of complete international
financial markets relative to the status-quo. More precisely, we calculate how much of
every consumption good (in the world) is left over if financial markets are completed and
agents in every country are kept indifferent relative to the status-quo. The larger is this
number, the greater is the extent of misallocation from incomplete risk-sharing.

We use Proposition 3 to study the extent of misallocation. Specifically, we assume
that the data is generated by an economy satisfying the assumptions in Section 2 — al-
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locations are efficient from a static perspective, but potentially inefficient over time and
states of nature. The advantage of using the second-order approximation in Proposition 3,
versus writing a fully-specified structural model and applying the exact result in Proposi-
tion 1, is that the informational requirements are much weaker. Specifically, we can apply
Proposition 3 without taking a stance on the stochastic process driving either the wedges
or the productivity shifters (and indeed, there may be productivity changes that we did
not explicitly model, like changes in iceberg costs at the industry-country pair level, and
they would not alter the validity of the second approximation, as long as these shocks are
small).

Structural model. Following standard practice in the international macro literature, we
assume that each country has a representative agent, but in contrast to the previouse
quantitative applications, we allow each country to have a different static consumption
aggregator.

We specialize the technologies introduced in Section 2 as follows. There are H coun-
tries (households), S industries in each country, and one primary factor endowment per
country (i.e. equipped labor). The static preferences of household h are an h-specific CES
aggregator across different industries with elasticity of substitution θS. Consumption by
h from industry i is an h, i-specific Armington CES aggregator over different origin coun-
tries, with elasticity of substitution θT.

The production function of industry i in country h is a CES aggregator, with elasticity
θY, of the local primary factor and an h, i-specific bundle of intermediate inputs from other
industries. This intermediate bundle is also an h, i-specific CES aggregator across different
industries with elasticity θS. The industry-j input used by producers in country h is an
h, j-specific Armington aggregator with elasticity θT across different origin countries.23

To build some intuition for the upcoming quantitative results, we present a simple
symmetric two country example of this model and apply Proposition 3.

Example 3 (Symmetric country example). Consider two symmetric countries, h ∈ {1, 2},
and suppose that each country produces one good using a linear technology from the
local factor endowment (i.e. there is one industry in each country and no intermediate
inputs). Let α denote the import share in both countries at the point we calibrate to.

Then given a path of consumption expenditure shares and prices in each country, de-

23Intuitively, this means we assume the same country-composition of the intermediate input bundle by
industry. For example, mining & quarrying and the manufacture of basic metals in Australia, have the same
expenditure shares on rubber and plastic products from China relative to India.
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fine
log τt(s) = η log

µ1t(s)
µ2t(s)

= log
(ω1t(s)/ω10) / (ω2t(s)/ω20)

(p1t(s)/p10)
1−η / (p2t(s)/p20)

1−η

to be the log ratio of the wedge for country 1 relative to country 2 multiplied by the EIS.
Then, applying Proposition 3 and rearranging yields

∆ log A ≈

 1
2 (1 − α) α

η4α (1 − α)
[
1 − η

θT

]
+ η2

θT

 ∞

∑
t=0

r
(1 + r)t+1 E0

[
log τt(s)

(
∞

∑
t′=0

r
(1 + r)t′+1 log

τt(s)
τt′(s)

)]
.

This example illustrates several important lessons. First, conditional on a given set of
observed Backus-Smith wedges, misallocation goes to zero if either the import share of
consumption, α, approaches zero or one. Intuitively, if the two countries are consuming
completely unrelated goods, then there is no insurance possible between them. Second,
as the EIS, η, tends to zero misallocation goes to infinity. In this case, consumption fluc-
tuations are very costly, and so to justify the fact that consumption fluctuates in the data,
we require very large consumption wedges. Finally, as the Armington elasticity, θT, rises
to infinity misallocation rises because there is more scope for international risk sharing
when foreign and domestic goods are more substitutable. These three lessons are borne
out in our quantitative model below.24

Calibration. We calibrate the expenditure shares in Proposition 3 using the 2014 release
of the world input-output database (Timmer et al., 2015).25 That is, we calibrate the con-
sumption share of each country ωh using that country’s share of total consumption, in-
vestment, and government expenditures. We calibrate the input-output matrix required
for Ahh′ using the transaction flows in 2014. We calibrate each industry-country’s expen-
ditures on intermediate inputs from other industries and value-added from the WIOD.
The model has 32 countries and 54 industries covering all sectors of the economy, includ-
ing primary sectors, manufacturing, and services.26

24Note that, as we vary the elasticities θT and η, we keep the Backus-Smith wedge process, log µht(s), and
import share, α, unchanged. If, instead, one were to hold some other primitives constant, then the effects of
changing these parameters may be very different if the implied equilibrium Backus-Smith wedge process
or import share change. Our approach is to keep the data constant as we vary parameters.

25To calibrate Proposition 3, we take advantage of the fact that, since allocations are statically efficient
by assumption, the observed relative prices of goods within each period and state, not including the con-
sumption wedges, in the decentralized equilibrium with wedges are equal to the relative marginal costs of
production. Hence, if, in the data, relative prices within periods and states reflect marginal costs, we can
calibrate the expenditures shares in the model directly to those in the data.

26We drop the activities of private households as employers industry and the activities of extraterritorial
organizations and bodies industry from the sample. The list of countries is Australia, Austria, Belgium,
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To measure wedges, we apply Proposition 2, which states that

log µht(s) = − 1
η
[log ωht(s)− log ωh0(s)] +

1 − η

η
[log pht(s)− log ph0] .

These are the traditional Backus and Smith (1993) wedges. We apply this formula at
annual frequency from 1970 to 2019 using the nominal consumption and CPI-based real
exchange rates from the Global Macro Database from Müller et al. (2025). This means
that we treat the equilibrium starting in 1970 as part of the (date- and state-contingent)
status-quo allocation. Hence, we treat the observed path of wedges as one realization (i.e.
sample path) of the wedges from the decentralized equilibrium with wedges in status-
quo. The wedges are different to zero if changes in log relative consumption and real
exchange rates between countries do not comove perfectly. For example, in our data, the
correlation between annual changes in real exchange rates and real consumption between
the US and each country is 0.17 for the median country, whereas perfect risk sharing
implies that this correlation should be −1. We quantify the extent of misallocation that
results from these wedges, abstracting from other possible distortions in the economy.

We assume an annual riskfree rate r = 0.05. We set the EIS η = 0.5, and the Armington
trade elasticity θT = 2. We assume the other elasticities of substitution, θS and θY, are
equal to one. We vary these parameters in sensitivity analyses.

To estimate the time-zero expectations in Proposition 3, we treat the wedges from
1970 to 2019 as one sample path from the distribution generating the data. Since we only
have one realization of the sample path, we estimate the expectation using this single
observation. Because we do not observe all terms in the infinite sums for present value
calculations, we treat unobserved terms as equal to an average of the observations in the
last five years of the data (2015 to 2019).27

Results. Misallocation in our baseline calibration is 5.2% — that is, with complete in-
surance markets, every country can be made indifferent to the status-quo allocation with
5.2% of every good left over. Recall that the status-quo allocation here is the date- and
state-contingent consumption processes in the observed equilibrium. The extent of mis-
allocation depends strongly on whether countries with rapid growth rates are included in
the sample. For example, if we exclude just China, then the extent of misallocation falls to
1.9% instead. If we drop China, India, Korea, and Indonesia as well, misallocation falls to

Brazil, Canada, Switzerland, China, Cyprus, Germany, Denmark, Spain, Finland, France, Great Britain,
Greece, Hungary, Indonesia, India, Ireland, Italy, Japan, South Korea, Luxembourg, Mexico, Malta, Nether-
lands, Norway, Poland, Portugal, Sweden, Turkey, and the US.

27Results are very similar if we set unobserved terms equal to the last observed year of these terms.
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only 1.0%. After this, the results are quite stable to dropping more countries. This shows
that if we include large countries with very different growth rates in the sample, then the
extent of misallocation from lack of international financial markets becomes larger. In the
rest of this section, we report results including all 32 countries.

We experimented with varying the start date, for example, if we start in 1980 instead
of 1970, then misallocation is slightly larger at 6.3%. If we start in 1993, then we can
increase the number of countries in the sample by 10 by including additional countries
that belonged to the Eastern Bloc. This raises misallocation to 6.6%.

We also vary the WIOD release we calibrate to. If we use an earlier release date, say
2006 instead of 2014, then misallocation is smaller, around 3.6% instead. This is because
the world economy is less open in 2006 compared to 2014, so there is less scope for inter-
national risk-sharing, as discussed in Example 3.
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Figure 7: Misallocation varying parameters. Dashed line is benchmark value.

Figure 7 shows how our estimates of misallocation change as a function of the Arm-
ington trade elasticity and the EIS. As expected from Example 3, misallocation is larger
the higher is the Armingon elasticity, since more substitutablity between domestic and
foreign varieties facilitate more risk sharing; and misallocation is larger the lower is the
EIS, since observed fluctuations in consumption are most costly for lower values of the
EIS. Whereas our estimates for misallocation are fairly insensitive to the Armington elas-
ticity, within the range the literature considers empirically plausible (e.g. from 1 to 5).
However, our estimates are sensitive to lower values of the EIS. For example, if the EIS is
0.25, misallocation is around 10% — and these losses will go to infinity as η approaches
zero. We do not present graphs for how estimated misallocation varies as a function of
the elasticity of substitution between industries, θS, or between intermediates and value-
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added, θY. Estimated losses are slightly increasing in these elasticities.

6 Conclusion

We characterize misallocation costs of financial market incompleteness for households in
both open and closed economies. We find that misallocation costs due to market incom-
pleteness are substantial within countries, especially if the elasticity of substitution across
time and states of nature is low. Misallocation losses from imperfect consumption-smooth
across countries, assuming a representative agent in each country, are much smaller. This
is particularly true among developed economies, who do not have very different growth
rates, and if trade elasticities are relatively low, so that imports are poor substitutes for
domestic goods. A promising area for future research is to extend our characterizations
to study misallocation relative to the constrained efficient Pareto frontier, accounting for
the imperfections of policy.
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Appendix A Proofs

The results in the paper build on Theorem 1 and Theorem 2 from Baqaee and Burstein
(2025b). To apply these results we recall the following definitions from that paper.

Define the fictitious Hicksian representative agent as follows.

Definition 3. The Hicksian representative agent is an agent whose preferences are repre-
sented by

U(c) = min
h

{ũh(ch)},

where ũh(ch) =
[
uh(ch)/uh(c

0
h)
] η

η−1 .

Define the compensated equilibrium as follows.

Definition 4 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, and wedges as
the original economy but where there is a representative agent with preferences as in Def-
inition 3. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

Theorem 2 from Baqaee and Burstein (2025b) implies that aggregate efficiency can be
calculated via the utility of the Hicksian representative agent in the compensated equilib-
rium.

Proof of Proposition 2. We now derive equation (2). Consider first a decentralized Arrow-
Debreu economy with wedges. Household h solves

max
cht(s)

1
1 − 1

η
∑ βtπ(s)cht(s)

1− 1
η

subject to

∑
s

∑
t

qt(s)µht(s)pht(s)cht(s) ≤ Ih

where qt (s) denotes Arrow-Debreu prices. Given Lagrange multiplier λh, the FOC is

βtπ(s)c
− 1

η

ht (s) = λhqt(s)µht(s)pht(s)

Taking ratios between household h and H and between t and 0,

cht (s) /ch0

cHt (s) /cH0
=

(
pht (s) /ph0

pHt (s) /pH0

)−η ( µht (s)
µHt (s)

/
µh0

µH0

)−η
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or
pht (s) cht (s) /ph0ch0

pHt (s) cHt (s) /pH0cH0
=

(
pht (s) /ph0

pHt (s) /pH0

)1−η ( µht (s)
µHt (s)

/
µh0

µH0

)−η

.

Solving for pht (s) cht (s),

pht (s) cht (s) =
pHt (s) cHt (s)

pH0cH0
ph0ch0

(
pht (s) /ph0

pHt (s) /pH0

)1−η ( µht (s)
µHt (s)

/
µh0

µH0

)−η

so

∑
h

pht (s) cht (s) =
pHt (s) cHt (s)

pH0cH0
∑
h

ph0ch0

(
pht (s) /ph0

pHt (s) /pH0

)1−η ( µht (s)
µHt (s)

/
µh0

µH0

)−η

. (15)

Define
ωht (s) ≡

pht (s) cht (s)
∑h′ ph′t (s) ch′t (s)

.

Using (15),

ωht (s) =
ph0ch0

(
pht(s)

ph0

)1−η (µht(s)
µh0

)−η

∑h′ ph′0ch′0

(
ph′t(s)

ph′0

)1−η (µh′t(s)
µh′0

)−η

=
ωh0

(
pht(s)

ph0

)1−η ( µht
µh0

)−η

∑h′ ωh′0

(
ph′t(s)

Ph′0

)1−η (µh′t(s)
µh′0

)−η
.

Set in every t, s

∑
h′

ωh′0

(
ph′t (s)

ph′0

)1−η ( µh′t
µh′0

)−η

= 1.

This is without loss of generality, as qt (s) will absorb different normalizations of wedges
in different states. Then,

ωht (s)
ωh0

=

(
pht (s)

ph0

)1−η (µht (s)
µh0

)−η

so
µht (s)

µh0
=

(
pht (s)

ph0

) 1−η
η
(

ωht (s)
ωh0

)− 1
η

Without loss of generality, we can set µh0 = 1 for all h (since different household-level
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wedges can be absorbed in Ih). Hence,

log µht (s) =
1 − η

η
log

pht (s)
ph0

− 1
η

log
ωht (s)

ωh0
, (16)

which corresponds to (2) in Proposition 2.
We show now that (16) also holds in the compensated equilibrium that replicates

the status-quo allocation. In the compensated equilibrium, the representative household
maximizes

min
h

{ũh (ch)}

with

ũh (ch) =

∑ βtπ(s)cht(s)
1− 1

η

∑ βtπ(s)c0
ht(s)

1− 1
η


η

η−1

,

subject to a single budget constraint

∑
h

∑
s,t

qt (s) µht (s) pht (s) cht (s) ≤ I.

The solution to this problem can be solved as a two-step budgeting problem. The Hick-
sian representative agent distributes income across h,

∑ Ih = I,

and for each h maximizes ũh (ch) subject to

∑
s,t

qt (s) µht (s) pht (s) cht (s) = Ih.

The choice of {Ih}h must be such that

ũh (ch) = ũh′ (ch) .

Setting Ih = I0
h for all h, where I0

h is the income level of household h in the status-
quo of the primitive AD economy with wedges, gives the status-quo allocation c0, which
satisfies ũh

(
c0

h
)
= ũh′

(
c0

h
)
= 1. Hence, there is an equilibrium in a AD economy with

a Hicksian representative agent that coincides with the primitive AD equilibrium in the
status-quo.

Proof of Proposition 3. We apply Proposition 7 from Baqaee and Burstein (2025b) and eval-
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uate the derivative at (z + ∆z, logµ)

∆ log A ≈ −1
2 ∑

i
λi(µ, z + ∆z) log µi ∑

j

∂ log ycomp
i (µ, z + ∆z)
∂ log µj

log µj

where ∆z is chosen to turn-off the productivity shocks and discrepancy between deriva-
tives at (z, logµ) and (z+∆z, logµ) is higher order. Since there are only household-level
wedges, we must only calculate

∑
h′

∂ log ccomp
h (µ, z + ∆z)
∂ log µh′

log µh′ .

We omit in the remainder of the proof the superscript comp. Recall that the Hicksian
representative agent maximizes ũh (ch) subject to ∑s,t qt (s) µht (s) pht (s) cht (s) = Ih and
constant ũh/ũH. The first order condition of the maximization problem is

∑ βtπ(s)cht(s)
1− 1

η

∑ βtπ(s)c0
ht(s)

1− 1
η


η

η−1
βtπ(s)cht(s)

− 1
η

∑ βtπ(s)cht(s)
1− 1

η

= λhqt (s) µht (s) pht (s)

or
ũh (ch) βtπ(s)cht(s)

− 1
η = λh ∑ βtπ(s)cht(s)

1− 1
η︸ ︷︷ ︸

λ̃h

qt (s) µht (s) pht (s)

Taking the ratio between h and H,

cht (s)
cHt (s)

=

(
µht (s) λ̃h pht (s)

µHt (s) λ̃H pHt (s)

)−η ( ũh
ũH

)η

Consider a change in wedges, keeping productivities fixed. Differentiating the equation
above and using the fact that the Hicksian RA keeps ũh/ũH constant, and denoting static
expenditure shares by χht (s) = pht (s) cht (s) / ∑ ph′t (s) ch′t (s) , we have

d log χht (s)− d log χHt (s) = (1 − η) (d log pht (s)− d log pHt (s))− η

(
d log

µht (s)
λ̃h

− d log
µHt (s)

λ̃H

)
.

(17)
Our goal is to solve for (compensated) d log cht (s) = d log χht (s)− d log pht (s) in re-

sponse to changes in wedges, to a first order. We consider neoclassical economies without
intertemporal production links and with household-time level wedges. The following
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equations hold to a first-order in the compensated equilibrium:

d log pt (s) = ∑
f

Ψ(:, f )d log w f t (s)

d log w f t (s) = d log λ̃ f t (s)

dΩt (s) = Θd log wt (s)

dλ̃′
t (s) = χ′ΨdΩt (s)Ψ + dχ′

t (s)Ψ

where λ′
t (s) = χ′

t (s)Ψt (s) denotes static Domar weights and Ψ = (I − Ω)−1 is the static
inverse Leontieff matrix. In combination with (17), we can solve for changes in quantities
and prices, given {d log µht (s) − d log λ̃h}. We consider the approximation around the
allocation with no wedges and no productivity changes.

Inspecting the above linearized system, we can express d log cht (s) as a function of
{d log µht (s)− d log λ̃h}:

d log cht = Ah (d logµt − d log λ̃
)

,

where d log λ̃ = {d log λ̃h}, d logµt = [d log µ1t, ..., d log µht], and Ah are vectors for each h
with coefficients that depend on parameters and shares in the allocations without shocks.
We now solve for d log λ̃h. The condition d log ũh = d log ũH can be expressed as

∑s,t π (s) βt c̄ht (s)
1− 1

η

∑s,t′ π (s) βt′ c̄ht′ (s)
1− 1

η

d log cht (s) =
∑t π (s) βt c̄Ht (s)

1− 1
η

∑t′ π (s) βt c̄Ht′ (s)
1− 1

η

d log cHt (s)

around the point of approximation c̄ht (s) = c̄h. So, we have

∑ π (s) βtd log cht (s)
∑ π (s) βt =

∑ π (s) βtd log cHt (s)
∑ π (s)∑ βt

or substituting

∑ π (s) βt Ahd logµt

∑ π (s) βt − ∑ π (s) βt Ahd log λ̃h

∑ π (s) βt =
∑ π (s) βt AHd logµt

∑ π (s) βt − ∑ π (s) βt AHd log λ̃h

∑ π (s) βt
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or

∑
s,t

π (s) βt ∑
h′

[
Ah

h′ − AH
h′

]
d log µh′t (s) = ∑

s,t
π (s) βt ∑

h′

[
Ah

h′ − AH
h′

]
d log λ̃h′

∑
h′

[
Ah

h′ − AH
h′

] ∑s,t π (s) βtd log µh′t (s)
∑s,t π (s) βt = ∑

h′

[
Ah

h′ − AH
h′

]
d log λ̃h′

Therefore, a solution is to set

d log λ̃h′ =
∑s,t π (s) βtd log µh′t (s)

∑s,t π (s) βt .

Therefore, to solve for changes in consumption by household in the compensated equi-
librium, we use the static system above plus

d log χht (s)− d log χHt (s) = (1 − η) (d log pht (s)− d log pHt (s)) (18)

− η

(
d log µht (s)−

∑t π (s) βtd log µht (s)
∑ π (s) βt

−d log µHt (s) +
∑s,t π (s) βtd log µHt (s)

∑ π (s) βt

)

The input to this system is the static input-output matrix, Ψ, and static expenditure shares
χ in the status-quo (both defined in detail below) and

d log µht (s)−
∑t,s π (s) βtd log µht (s)

∑ π (s) βt ,

which can be calculated from the status-quo wedges.
We now provide an expression for Ahh′ . Define the within-period (static) (H + N +
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F)× (H + N + F) input-output matrix:

Ω =



0 · · · 0 b11 · · · b1N 0 · · · 0
... · · · ... · · · · · ·
0 · · · 0 bH1 · · · bHN 0 · · · 0

0 · · · 0 Ω11 · · · Ω1N Ω1N+1 · · · Ω1N+F
... · · · ... . . .

0 · · · 0 ΩN1 ΩNN ΩNN+1 · · · ΩNN+F

0 · · · 0 0 · · · 0 0 · · · 0
... · · · ...

... · · · ...
... · · · ...

0 · · · 0 0 · · · 0 0 · · · 0


The first H rows correspond to the households consumption baskets. The next N rows
correspond to the expenditure shares of each producer on every other producer and
factor. The last F rows correspond to the expenditure shares of the primary factors.
The Leontief inverse matrix is the (H + N + F) × (H + N + F) matrix defined as Ψ ≡
(I − Ω)−1. The within-period Domar weights are28

λ′ = χ′Ψ,

where χh denotes the share of expenditures of household h in total expenditures in a given
period. Define the F × F matrix B with element ( f , f ) given by

b f , f ′ = (1 − η)Covχ′(Ψ(:, f ), Ψ(:, f ′)) + ∑
f ′∈F

∑
j∈H∪N

λj(1 − θj)CovΩ(j.:)
(Ψ(:, f ), Ψ(:, f ′)),

and the F × H matrix D with element ( f , h) given by

d f ,h = Covχ′(eh, Ψ(:, f ))

where eh is the h-th basis vector column vector (with hth element equal to 1). Define the
H × H matrix.

F = −ηΨHF (diag(λF)− B)−1 D.

where ΨHF is the H × F block of Ψ and λF is the F × 1 vector of static factor shares (the

28Within-period Domar weights are sales in a period divided by total consumption expenditures in that
period. We refer to these as within-period Domar weights to contrast them with Arrow-Debreu Domar
weights which are net present value sales divided by net present value of total consumption using Arrow
securities.
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last F elements of λ). Finally, define the H × H matrix,

A = −η (F + I)− (1 − η)1χ′F + 1ηχ′.

The element (h, h′) of A is Ahh′ in Proposition 3. Note that A depends on the input-
output matrix Ω, expenditure shares χ, and elasticities of substitution in production and
consumption, θj for j ∈ H ∪ N, and the EIS η.

Other proofs to be added.
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