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Abstract

This paper studies aggregate efficiency in Pareto efficient general equilibrium mod-

els where households make a discrete choice about where they work. To measure the

change in aggregate efficiency in response to technological change, we ask: “what is
the maximum reduction in total resources, given the new technologies, such that it is pos-
sible to make every household at least indifferent to their status-quo allocation? If there is

a single consumption good, then this measure is equivalent to asking: once the win-
ners compensate the losers, how much money is left over? We characterize our measure

of efficiency and show that, to a first-order approximation, its elasticity with respect

to technology shocks is given by sales shares. This provides a justification for how

multifactor productivity growth is measured in the national accounts. We also pro-

vide exact characterizations, showing how aggregate efficiency can be calculated by

relying on cross-price elasticities of the location demand system, without explicitly

making assumptions about the functional form of utility functions or the distribu-

tion from which tastes are drawn. We also contrast our measure with the common

“expected utility” approach. We show that unless all households have the same pref-

erences, then the two measures do not coincide even to a first-order.
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1 Introduction

In this paper, we study aggregate efficiency in general equilibrium models with discrete
choice and heterogeneous preferences. Our approach differs from most of the rest of the
literature in that we do not use a social welfare function or invoke ex-ante “expected util-
ity” arguments to measure aggregate efficiency. Instead, we use the definition in Baqaee
and Burstein (2025a). Suppose we start from some status-quo allocation, and technolo-
gies change. To measure the change in aggregate efficiency, we ask: “what is the maximum
reduction in total resources given the new technologies, such that it is possible to make every
household at least indifferent to their status-quo allocation?” If there is a single consumption
good, this measure is related to the sum of compensating variations (“how much money
is left over after winners compensate losers”).

This question has several useful features. First, it has interpretable units expressed
in terms of units of every good that are “left-over” once every household has been com-
pensated for the change. Second, it depends only on the status-quo allocation, and prim-
itives of the economy: technologies and preference relations. In particular, it does not
require the economist to take a normative stance on Pareto-weights, inequality aversion,
or cardinal properties of utility functions. This also means that our measure of efficiency
has testable implications and can, at least in principle, be falsified. Both of these advan-
tages are ultimately a consequence of the fact that our measure of aggregate efficiency is
a counterfactual question about observables. Therefore, models that are observationally
equivalent in terms of physical allocations, will assign the same number to the change in
aggregate efficiency under our definition.

In the current version of the paper, we study only Pareto efficient models and com-
petitive equilibria. That is, we abstract from distortions and externalities discussed by
Fajgelbaum and Gaubert (2020) and Fajgelbaum and Gaubert (2025). Working with effi-
cient models helps to clarify the differences between our approach and standard practice
in the literature. However, extending the current analysis beyond Pareto efficient models
is an important area for future work.

The structure of the paper is as follows. We set up the preferences and technologies
in Section 2. Households have preferences over consumption and the region and/or in-
dustry in which they live and work. Production uses labor and intermediate inputs, and
can accommodate input-output networks and trade but no agglomeration or congestion
forces. In Section 3, we formally define our notion of aggregate efficiency. In this sec-
tion, we show how to apply Theorem 1 from Baqaee and Burstein (2025a) in this setting,
without taking a stance on how allocations are decentralized. In Section 4, we define a
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competitive equilibrium given preferences and technologies, and discuss how our mea-
sure of aggregate efficiency can be applied to analyze competitive equilibria specifically.

In Section 5 we prove a version of Hulten (1978) for economies with discrete choice.
We show that, in competitive equilibria, the elasticity of aggregate efficiency to a produc-
tivity shock to a producer or region is equal to the sales of that producer or region divided
by nominal GDP. This holds regardless of the underlying assumptions about utility func-
tions and production functions. We show that our measure of aggregate efficiency coin-
cides, to a first-order approximation, with measures of multifactor productivity growth
(or the Solow residual) computed using a quality-adjusted labor input (as in, e.g., chapter
3 of the OECD’s manual on measuring productivity). That is, our analysis provides a the-
oretical justification for those statistics in efficient economies with heterogeneous tastes
and discrete choice.

Interestingly, we also show that this result does not typically apply to real GDP in
such models, despite the fact that the economy is perfectly competitive. The intuition is
that when people move from one job to another, their real wages adjust in a way that
moves real GDP, but not aggregate efficiency. This is because any change in the real wage
experienced by a marginal household that changes its choice is exactly offset by a change
in the amenity value of that option for that household. Whereas the change in the real
wage is measured in real GDP, the offsetting change in amenity value is not measured
in real GDP. Since multifactor productivity growth statistics subtract the increase in real
GDP due to compositional changes in the labor force, they correctly measure the increase
in aggregate efficiency to a first-order.

In Section 6, we go beyond a first-order characterization by focusing on the special
case of the model with a single traded consumption good. We provide exact (not just
first-order) characterizations of the change in aggregate efficiency stated purely in terms
of observable objects like sales shares, wage differentials, and migration decisions.

Crucially, we show that the market-level location demand system, which maps vectors
of wages to population shares, can be used to calculate changes in aggregate efficiency
without any explicit assumptions about the functional form of utility functions or the dis-
tribution of taste shifters in the population. In particular, this can be achieved by solving
a differential equation in terms of cross-price elasticities of the location demand system,
without having to specify or simulate the distribution of household tastes. We illustrate
these results using the popular isoelastic location demand system discussed by Redding
(2016) and Redding and Rossi-Hansberg (2017), which is typically derived assuming that
household tastes follow a Frèchet distribution.

We end, in Section 7, by briefly contrasting our approach to the popular “expected
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utility” or “expected social surplus” function used in the literature. We highlight that our
measure does not give the same answers except in the case where there is no household
heterogeneity in tastes.

Relation to companion papers. Although this paper is self-contained, it has two com-
panions. Baqaee and Burstein (2025a) provides a general framework for studying aggre-
gate efficiency with heterogeneous agents. Many of the results in this paper are therefore
applications of the general approach in that paper. In the other companion paper, Baqaee
and Burstein (2025b), we apply the same framework to study efficiency costs of financial
market incompleteness.

Relation to the literature. This paper is related to the large literature on discrete con-
sumer choice with heterogeneous tastes, sometimes called random utility models. Many
papers in this literature study partial equilibrium problems where agents chose a discrete
good among many, taking prices and income as given, following McFadden (1981). The
pioneers in this literature, like McFadden (1981) and Small and Rosen (1981), and Ander-
son et al. (1992), emphasized that consumer welfare in these models should be measured
using compensating or equivalent variations of the individual agents. However, under
the assumption that the indirect utility function is quasi-linear in income, it is known that
there exists a closed-form formula, known as the “social surplus function,” that can be
used to calculate the sum of compensating variations. This social surplus function is the
expected utility of the agents, under a particular cardinalizing assumption about taste
shifters.

In the absence of quasi-linearity, calculating the sum of compensating variations typ-
ically requires resorting to simulation methods. See Hortaçsu and Joo (2023), and the
references therein, for a recent textbook discussion. As discussed by Hortaçsu and Joo
(2023), recent studies ignore compensating variations and directly use the social surplus
function, the expected utility of agents under a cardinalizing assumption, as the starting
point of their analysis.

A parallel and closely related literature is the spatial/occupational choice literature,
which studies general equilibrium problems where agents choose a discrete location or
job among many, taking prices but not their incomes as given. A counterpart to the social
surplus function also exists in this literature, and this social surplus function is frequently
used to conduct welfare analysis. However, this social surplus function, oftentimes called
the “expected utility” function is not easily related to compensating variations of the in-
dividual agents.
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In both of these literatures, the social surplus function is commonly used and justified
on the grounds that it measures the “expected” utility to consumers. A recent example
is Mongey and Waugh (2024), who consider an economy with an ex-ante stage where
households have preferences over lotteries of their tastes. With this interpretation, one
can study the welfare of this aggregate ex-ante agent before tastes are realized. They show
that in such models, ex-post equilibrium allocations are inefficient since agents would
want to insure each other against tastes before those tastes are realized. However, if such
an ex-ante state does not exist, then the results of this type of analysis rest on an untestable
cardinalizing assumption. That is, if households cannot make choices in the ex-ante stage
that reveal their preferences about how they rank one set of taste parameters against
another, then there is no conceivable choice data that can be used to recover the “ex-ante”
expected utility function. Our approach is different since it does not rely on the existence
of an ex-ante stage before tastes are known, nor does it rely on cardinal properties of
utility functions.

Another related paper, which uses the social surplus or expected utility formulation,
is Donald et al. (2023). They consider spatial models where households can be grouped
into types, say by race or gender, and each type has heterogeneous tastes drawn from
some type-specific distribution. As is standard practice in the literature, they compute
a utilitarian social surplus function for each group. They then define aggregate welfare
across groups using a social welfare function defined over the surplus function for each
group. They decompose the first-order change in this notion of social welfare into differ-
ent terms. The most important difference between our papers is that we ask a different
question. As explained above, we do not use social welfare functions, or the utilitarian
(“expected”) social surplus function. Instead, we define aggregate efficiency in terms of
resources savings after compensating transfers, and we characterize, both to a first-order
and nonlinearly, in terms of familiar statistics of supply and demand curves. This means
that the question we ask does not require taking a stance on interpersonal utility compar-
isons, it answers a counterfactual question about quantities, and is, at least in principle,
falsifiable.

While the utilitarian approach is very common in the spatial literature, it is not uni-
versal. For example, Kim and Vogel (2020), who define aggregate welfare using the sum
of workers’ compensating variations, in a model in which workers choose among a dis-
crete number of sectors with heterogeneous amenity values, non-labor participation and
can be unemployed. They show that, a first order, the elasticity of aggregate welfare with
respect to wages is given by income shares of each sector. Our measure of aggregate ef-
ficiency coincides with the sum of compensating variations in a simplified version of our
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model where there is a single consumption good. The first-order results in our paper com-
plement the work in that paper, by proving an analogous result for aggregate efficiency
in terms of productivity changes in general equilibrium with multiple goods and input-
output networks. We also provide an exact characterization, in terms of observables, in
the case when there is a single traded consumption good.

2 Environment

In this section we define the primitives of the economic environment: preferences, tech-
nologies, and resource constraints.

Households. Consider a collection of agents that choose among R different options,
for concreteness, think of them as combinations of regions and industries. Agent h has
preferences over its choice of options, lh ∈ R, and a vector of consumption goods, ch ∈
R|R|, represented by the utility function uh(ch, lh). We call lh the location of household h,
which includes both the region as well as the industry of occupation of h. Each worker
has a unit endowment of time to work and can choose one, and only one, option:

∑
r
1[lh = r] = 1. (1)

Denote the efficiency units of labor in location r by

Lr = ∑
h

ahr1[lh = r], (2)

where ahr is the efficiency units of household h if they choose to be located in r.

Technologies. Good r is produced according to the production technology

yr = zrFr
(
{xrj}j, Lr

)
, (3)

where zr is a Hicks-neutral productivity shifter for producer r, Fr is a constant returns
production technology, and xrj are intermediate inputs from j ∈ R.
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Resource constraints. The resource constraint for good r is that consumption and inter-
mediate input usage is less than production:

∑
h

chr + ∑
j

xjr ≤ yr. (4)

Denote the consumption possibility set, given productivity shifters z and location of
each household l, by

C(z, l) ≡
{
c ∈ RN×H : such that (2), (3), and (4) are satisfied for some {xij}

}
.

We sometimes suppress dependence of the consumption possibility set on z and l.1

Below, we provide a toy example that we return to again and again to illustrate the
general definitions and results.

Example 1 (Environment of the toy example). Consider an economy with two regions
indexed by 1 and 2. Suppose there is a single consumption good, produced linearly from
labor. Let z1 and z2 denote the productivity of labor in the two regions. Household h’s
utility function is2

uh(ch, lh) = ϵh1ch1[lh = 1] + ϵh2ch1[lh = 2],

where ϵhi is the amenity value of choosing option i. Because there is a single consumption
good, ch is a scalar. The production technology in each region is

yr = zrLr = zr ∑
h

ahr1[lh = r],

where ahr is the household-specific productivity of h in region r. The resource constraint
is

∑
h

ch ≤ ∑
r

yr.

1Proportional shifts in the consumption possibility set can be achieved by scaling aggregate labor pro-
ductivity. That is, consider the aggregate labor productivity shifter Z that affects the productivity of labor
in every r simultaneously: yr = zrFr

(
{xrj}j, ZLr

)
. Since production functions have constant returns to

scale, the feasible consumption sets scales proportionally with Z. That is, a doubling of Z doubles the
consumption possibility set.

2We discuss more general preferences in Section 6.
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Hence the production possibility set is defined by

C =

{
c ∈ R2 : ∑

h
ch ≤ ∑

r
zr ∑

h
ahr1[lh = r]

}
.

In the rest of the paper, we refer to the economic environment in Example 1 as the toy
economy. After stating each general result, we illustrate the intuition by applying it to the
toy economy.

3 Aggregate Efficiency with Discrete Choice

Let the status-quo allocation be a collection of consumption vectors, c0 = {c0
h}h, and

location choices, l0 = {l0
h}h, for each household.

Definition 1 (Aggregate efficiency with location choice). The change in aggregate effi-
ciency relative to the status-quo is

A(c0, l0; C) = max
{

ϕ : there is c ∈ ϕ−1C(z, l) and (ch, lh) ⪰h (c0
h, l0

h) for every h
}

.

We focus on log changes in A, starting from a point where the status-quo allocation is
on the boundary of the status-quo feasible set: log A(c0, l0; C(z0, l0)) = 0. In this case,

∆ log A(c0, l0; C) = log A(c0, l0; C)− log A(c0, l0; C(z0, l0)) = log A(c0, l0; C).

In words, ∆ log A is the maximum reduction in the consumption possibility set (e.g.
achieved through a change in aggregate labor productivity) such that it is still possible
to make every agent indifferent given their locations. If ∆ log A is a positive number, this
effectively means we could divide every household’s labor productivity by a factor A
(shrinking the consumption possibility set by the same factor) and still make every house-
hold indifferent to the status-quo. Hence, our measure of aggregate efficiency, ∆ log A, is
a measure of the “left-over” resources once every agent has been compensated for the
change at their given locations.

Example 2 (Aggregate Efficiency in toy economy). Let c0 and l0 denote the status-quo
allocation in the toy economy. The change in aggregate efficiency is the maximum re-
duction in labor productivity for every household and every region by a common factor
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∆ log A, so that the new possibility set is:{
c : ∑

h
ch ≤ 1

A ∑
r

zr ∑
h

ahr1[lh = r]

}
,

such that it is still possible to keep every household indifferent to the initial allocation.

As discussed in Baqaee and Burstein (2025a), if there is a single consumption good,
then ∆ log A coincides with the Kaldor-Hicks notion of efficiency. That is, ∆ log A can be
interpreted as the ratio of aggregate nominal income to the sum of compensating varia-
tions for each household. The toy economy, which has a single consumption good, satis-
fies this property.

We now show that Theorem 1 from Baqaee and Burstein (2025a) can be extended to
apply to this environment. To do so, we redefine the homothetized utility function of
each agent.

Definition 2. Let uh : R|R| × R → R denote a utility representation for agent h. The
homothteized utility function ũh : R|R| × R → R is implicitly defined by

uh(
ch
ũh

, lh) = uh(c
0
h, l0

h).

The homothetized utility function, ũh, is homogenous of degree one in consumption
by construction. Given the homothetized utility functions, we define a Hicksian repre-
sentative agent in this environment.

Definition 3. The Hicksian representative agent is an agent whose preferences are repre-
sented by

U(c, l) = min
h

{ũh(ch, lh)},

where ũh are homothetized utility functions.

Example 3 (Homothetized utility in the toy economy). The homothetized utility function
of household h is

ũh(ch, lh) =
ϵh1ch

ϵhl0
h
c0

h
1[lh = 1] +

ϵh2ch

ϵhl0
h
c0

h
1[lh = 2],

Hence, ũh(ch, lh) is simply equal to the growth in consumption if h stays in the same loca-
tion, because lh = l0

h. However, if h moves locations, then ũh is the growth in consumption
times the ratio of the amenity in the new region relative to the status-quo region. Specif-
ically, if ϵh in the status-quo region is larger than ϵh in the region h moved to, then ũh is
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smaller than consumption growth, and the reverse is true if ϵh in the status-quo is smaller
than ϵh in the region.

We are now in a position to extend Theorem 1 in Baqaee and Burstein (2025a), showing
that calculating aggregate efficiency can be converted into an equivalent utility maximiza-
tion problem.

Theorem 1 (Aggregate Efficiency by Utility Maximization with Discrete Choice). Define
the value of C for the Hicksian representative agent to be

V(C) = max
c∈C(z,l)

U(c, l).

The change in aggregate efficiency is equal to the value of C to the Hicksian representative agent:

∆ log A = log V(C).

Typically, assuming away corner solutions, the problem in Theorem 1 can equivalently
be expressed as

V(C) = max
c∈C

{
ũh(ch, lh) : ũh′(ch′ , lh′) = ũh(ch, lh) for every h′

}
.

In words, we maximizing ũh for some specific household, subject to the additional con-
straints that ũh′ for every other household must be the same as ũh.

Below, we provide a simple example by returning to the toy economy.

Example 4 (Aggregate Efficiency in the toy economy). Let c0 and l0 denote the status-quo
allocation in the two region example economy. Then, Theorem 1 implies that

∆ log A = log max
c

min
h

{
ϵh1ch

ϵhl0
h
c0

h
1[lh = 1] +

ϵh2ch

ϵhl0
h
c0

h
1[lh = 2]

}
,

subject to

∑
h

ch = ∑
r

zr ∑
h

ahr1[lh = r].

Equivalently, fix some h, then

∆ log A = log max
c

{
ϵhlh ch

ϵhl0
h
c0

h

}
,
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subject to

∑
h

ch = ∑
r

zr ∑
h

ahr1[lh = r], and
ϵhlh ch

ϵhl0
h
c0

h
=

ϵhlh′ ch′

ϵhl0
h′

c0
h′

, (for every h′).

If we combine constraints, the solution is

A =
∑r zr ∑h ahr1[lh = r]

∑h

ϵhl0h
ϵhlh

c0
h

. (5)

This expression is directly interpretable. The numerator is total production of the con-

sumption good. The denominator is the sum of
ϵhl0h
ϵhlh

c0
h over all h. The number

ϵhl0h
ϵhlh

c0
h is

the minimum consumption agent h needs to be given in location lh to ensure indifference
relative to the status-quo.

Notice that if there is no heterogeneity in household tastes for locations, i.e. ϵhr = ϵhr′

for each h, then (5) is simply the ratio of the total quantity of the consumption good given
the new technologies relative to the status-quo.

4 Competitive Equilibrium with Discrete Choice

We now define the competitive equilibrium. Each household h maximizes utility uh(ch, lh)

subject to two constraints. The first constraint, (1), implies that household can only choose
one of the discrete options. The second constraint is the budget constraint

∑
r

prchr = ∑
r

wrahr1[lh = r],

which states that consumption expenditures must be financed by labor income in the
location the household chooses — where the nominal wage per efficiency unit of labor in
region r is wr.

Firm r chooses inputs xrj and labor inputs Lr to maximize profits

pryr − ∑
j

pjxrj − wrLr

subject to its production technology, (3), taking prices as given.
We now define general equilibrium with discrete choice.

Definition 4 (Equilibrium with Discrete Choice). An equilibrium is a collection of con-
sumption vectors, output vectors, intermediate input choices, location choices, prices,
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and wages such that each household chooses consumption and location to maximize util-
ity subject to their budget constraint and (1); firms choose output and inputs to maximize
profits taking prices as given; and all resource constraints, (2) and (4), are satisfied.

We illustrate competitive equilibrium inside the toy economy.

Example 5 (Competitive Equilibrium in the toy economy). Returning to the toy econ-
omy, the budget constraint of each household is

ch = w1ah11[lh = 1] + w2ah21[lh = 2],

where we have set the price of the single consumption good to be the numeraire. In the
competitive equilibrium, the real wage per efficiency unit in each region is equal to labor
productivity in that region: wr = zr.

The only variable left to be determined in equilibrium is each household’s choice of
location. For elegance, assume that there is a unit mass of households continuously dis-
tributed according to the density function g(ϵ1, ϵ2, a1, a2), where ϵ1 and ϵ2 are amenity val-
ues and a1 and a2 are location-specific productivities (all strictly positive). To pin down
the equilibrium allocation, rank households by the ratio of xh = (ah2/ah1) × (ϵh2/ϵh1).
Define the cut-off value

x∗ =
z1

z2
.

Household h locates in region 1 if, and only if, xh < x∗, otherwise, household h locates in
region 2. In equilibrium, the efficiency units of labor in region 1 is

L1 =
∫ ∫ ∫ ∫

a11

[
a2

a1

ϵ2

ϵ1
≤ x∗

]
g(ϵ1, ϵ2, a1, a2)dϵ1dϵ2da1da2,

where g is the joint density of taste and productivity shifters. A similar expression holds
for L2. In the competitive equilibrium, household h in region lh consumes zhahlh units of
the consumption good.

Consider the special case where there is no heterogeneity in productivity, say ah1 =

ah2 = 1 for every h. In this case, denote the density of xh = ϵh2/ϵh1 by f . In this simple
case, the integral above simplifies to just

L1 =
∫ x∗

0
f (x)dx,

which is the fraction of households for whom xh = ϵh2/ϵh1 is less than x∗ = z2/z1.
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Having defined competitive equilibrium with discrete choice, we now consider how
aggregate efficiency changes in response to productivity shocks assuming competitive
equilibrium. Let l(z) be equilibrium location decisions by each household given pro-
ductivity shifters z. Define the consumption possibility set by C(z, l(z)). The change in
aggregate efficiency, given some status-quo allocation, can then be obtained by Theorem 1
applied to this consumption possibility set.

In the next two sections, we provide first-order and nonlinear characterizations of
the change in aggregate efficiency comparing, C(z, l(z)), to the status-quo competitive
equilibrium allocation, (c(z0), l(z0)).

5 First Order Results

In this section, we consider first-order changes in aggregate efficiency in response to first-
order changes in productivity shifters z assuming the economy is in a competitive equi-
librium. We show that changes in aggregate efficiency are given by sales shares in the
status-quo, and one does not need to solve for how allocations respond to the shocks
because of the envelope theorem.

To do so, index productivity shifters by a scalar t.3 We interpret the status-quo allo-
cation to be the allocation generated by a competitive equilibrium with z(0). We then
consider how aggregate efficiency, A(t), changes as t changes, always relative to the
status-quo allocation associated with z(0).4 Throughout the paper, for any variable X, we
use the shorthand dX to denote infinitesimal changes dX ≡ dX

dt dt. For non-infinitesimal
changes, we write ∆X = X(t)− X(0) =

∫ t
0 dX. When there is no ambiguity, we suppress

the dependence of ∆X and dX on t.
To state the result, denote sales of r relative to aggregate nominal consumption by

λr(t) =
pr(t)yr(t)

∑r ∑h pr(t)chr(t)
.

This statistic is popularly called the Domar weight of r. Note that, in general, ∑r λr > 1
if there are intermediate inputs. This is because if there are intermediate inputs, then the
sum of sales is greater than the sum of consumption expenditures.

3The scalar t simply indexes primitives, and may or may not correspond to time.
4With some abuse of notation, this means that A(t) = A(c(z(0)), l(z(0)); C(c(z(t)), l(z(t)))).
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Proposition 1 (First-Order Efficiency Change with Discrete Choice). To a first-order approx-
imation in productivity shocks, the change in aggregate efficiency is

∆ log A ≈ ∑
r

λr(0)∆ log zr,

where the approximation error is (∆ log zr)2.

Intuitively, the change in aggregate efficiency is “as-if” households do not change lo-
cations in response to the productivity shock. The reason is that any change in consump-
tion caused by a change in location is exactly offset by a change in amenity value for
the marginal household that changed locations. Hence, such effects can be ignored to a
first-order. We illustrate Proposition 1 by applying it to the toy economy.

Example 6 (Change in aggregate efficiency in toy economy). In the two region economy,
changes in aggregate efficiency, to a first order, satisfy

∆ log A ≈ w1L1

w1L1 + w2L2
∆ log z1 +

w1L1

w1L1 + w2L2
∆ log z2,

where wiLi are evaluated at the status-quo allocation. Hence, an increase in productivity
in region r raises aggregate efficiency by that region’s Domar weight (or equivalently, its
share of aggregate income).

We now contrast changes in aggregate efficiency with changes in real GDP. It is well
known that in a competitive equilibrium without discrete choice, if labor (and other pri-
mary factors like land) are inelastically supplied, then the elasticity of real GDP to pro-
ductivity shocks is given by Domar weights (see Hulten, 1978). Proposition 1 shows that
this result applies to aggregate efficiency in our environment, but we show that it need
not apply to real GDP. First, define real GDP.

Definition 5. We define the (infinitesimal) change in real GDP in the usual way, as a
share-weighted sum of changes in final consumption quantities:

d log Y(t) = ∑
r

∑
h

pr(t)chr(t)
∑r ∑h pr(t)chr(t)

d log chr.

Non-infinitesimal changes are defined by integrating d log Y.

We illustrate the difference between ∆ log A and ∆ log Y using the toy economy.
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Example 7 (Real GDP versus aggregate efficiency in the toy economy). In the two region
economy, changes in real GDP are simply the change in total consumption:

d log Y = ∑
r

∑
h

prchr

∑r ∑h prchr
d log chr =

d ∑r ∑h chr

∑r ∑h chr
= d log ∑

r
∑
h

chr,

since there is only one consumption good with the same price in both regions p1 = p2.
That is, the change real GDP (in logs) is simply the log change in the aggregate quantity
of the consumption good.5

The response in real GDP, even with more than two regions, to a first order, is given
by

∆ log Y ≈ ∆ log A +
1

∑r′ wr′Lr′

∫
∑

i,j∈R

[
wiai − wjaj

]
∆Lj→i(a) f (a)da, (6)

where ∆Lj→i(a) is the share of agents with productivity vector a who move from region
j to region i and f (a) is the marginal distribution of productivity vectors a. In words,
real GDP is the change in aggregate efficiency plus the change in real income for those
households that move between regions (relative to nominal GDP). From this equation, it
is clear that ∆ log Y coincides with the change in aggregate efficiency, ∆ log A, if there is
no mobility, ∆Lj→i = 0.

The easiest way to see the difference is to imagine there is a single household in the
economy living in location 1 but indifferent between living in location 1 or 2. For example,
the real wage in location 1 is higher than in location 2, but the amenity value of living in
2 is higher than 1. In this case, an infinitesimal increase in the productivity in location
2 causes the household to move to location 2. Since there is an infinitesimal increase in
productivity, efficiency rises by an infinitesimal amount. The real wage falls discretely
when the agent migrates, but the amenity value rises discretely to offset that. However,
real GDP falls discretely by the gap between the real wage in location 2 and location 1
once the household migrates.

In the two-region example, we can rewrite this as

∆ log Y ≈ ∆ log A +
∫ ∫ [w1a1 − w2a2] g( z2

z1

a1
a2
|a1, a2)d

[
z2
z1

a1
a2

]
w1L1 + w2L2

f (a1, a2)da1d2,

5For this toy economy, notice that this first-order approximation is exact:

∆ log Y(t) =
∫ t

0
d log Y =

∫ t

0
d log ∑

r
∑
h

chr = ∆ log ∑
r

∑
h

chr.
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where g(·|a1, a2) is the conditional density of ϵ1/ϵ2 given a1 and a2, and f is the density
of the household-by-location specific productivity vector (a1, a2). To make this formula
easier to see through, consider two extreme cases. In the first case, suppose there is no
household-by-location productivity heterogeneity. In the second extreme case, suppose
that there is no household-by-location taste heterogeneity.

Consider the first extreme. When there is no household-by-location productivity het-
erogeneity, f (a1, a2) is a Dirac delta function, without loss of generality, say at (a1, a2) =

(1, 1). In this case,

∆ log Y ≈ ∆ log A +
[w1 − w2] g( z2

z1
)d
[

z2
z1

]
w1L1 + w2L2

.

The term g( z2
z1
)d
[

z2
z1

]
is the mass of households that move between 1 and 2 in response to

the shock. The change in real GDP coincides with the change in aggregate efficiency only
if either there are no households at the cut-off, g(z2/z1) = 0, or if there is no difference
between real wages in the two regions z1 = z2.

Now consider the second extreme. When there is no household-by-location taste het-
erogeneity, say ϵ1 = ϵ2, the marginal households are ones for whom w1a1 = w2a2. Hence,
the general expression simplifies to just

∆ log Y ≈ ∆ log A

because when the marginal household relocates from one location to another, their real
income does not change.

We end this section by illustrating the relationship between ∆ log A and multifactor
productivity using the toy economy.

Example 8 (Multifactor productivity versus aggregate efficiency in the toy economy).
Define multifactor productivity, following Solow (1957) and OECD (2001), as

d log AMFP = d log Y − ∑
r

wr

∑r′ wr′Lr′
dLr.

The second term is the change in the “quality-adjusted” labor input. Rewriting this equa-
tion for d log Y shows that changes in output are driven either by multi-factor productiv-
ity growth, d log AMPF, or migration between regions/occupations (changes in composi-
tion of skill). Substituting (6) into this expression and manipulating yields

∆ log AMPF ≈ ∆ log A.
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In words, the change in aggregate efficiency, as measured by ∆ log A, coincides with the
change in multifactor productivity growth, as measured by ∆ log AMFP, to a first-order
approximation. However, as we show in next section, this equivalence between ∆ log A
and the Solow residual breaks down beyond the first-order.

6 Nonlinear Characterization of Efficiency in Terms of Ob-

servables

In this section, we go beyond the first-order approximation in Proposition 1 and charac-
terize nonlinear changes in aggregate efficiency. We do so for a special case but we expect
many of the steps generalize beyond the simple case that we consider here. The key idea
in this section is that changes in aggregate efficiency can be expressed without reference
to unobservable parts of the model like the distribution of taste shifters. Instead, we char-
acterize aggregate efficiency purely in terms of familiar statistics of demand curves and
other observables.

This means that conditional on the same observables (like movements from region i to
region j given a shock), our aggregate efficiency measure is the same, and the economist
does not have to estimate or take a stance on issues like the underlying distribution of
taste shocks or the functional form of the utility function (e.g. are the taste shocks additive
or multiplicative).

We begin this section by describing a special case of the general environment. We then
state our characterization result.

6.1 Specializing the Environment

The model we focus on is a generalization of the toy economy, but allowing for more than
two options and more general utility functions.

Preferences. There is a unit mass of households with preferences uh(c, l) over a single
consumption good and locations (recall that a “location” could be in space or in occupa-
tions). Following Theorem 1, we use “homothetized” utility functions to calculate aggre-
gate efficiency. If household h locates in lh, the homothetized’ utility function of h has the
form

ũh(ch, lh) = ϵhlh ch,

17



where ϵhlh is a household-by-location shifter capturing tastes for living in location lh. To
see this, note that without loss, we can write uh(ch, lh) = ∑r fhr(ch)1[lh = r], where fhr is
a household-by-region specific strictly increasing function. Applying the definition of the

homothetized utility function and inverting gives: ũh(ch, lh) = ∑r

[
f−1
hr (uh0)

]−1
ch1[lh =

r] = ∑r ϵhrch1[lh = r] = ϵhlh ch, where ϵhr ≡
[

f−1
hr (uh0)

]−1
. This also pins down the taste

parameter for the status-quo location ϵhl0
h
= 1/(c0

h). As long as we do not put any as-
sumptions on the distribution of ϵhr, this is fully general. The only restriction we place on
the distribution of household h’s taste parameters, ϵh, is that they are distributed accord-
ing to some continuous multivariate distribution.

Households choose the location they live lh to maximize utility uh(ch, lh) subject to the
budget constraint

ch = ∑
r∈R

wr1[lh = r],

where wr is the real wage associated with option r. The real wage is unambiguous to
define since there is only one consumption good.

Production and resource constraints. The single consumption good is produced lin-
early from labor. Production in region r is

yr = zr ∑
h
1[lh = r].

We abstract from household-region-specific productivity differences for simplicity. The
equilibrium real wage in region r is wr = zr. Goods market clearing requires that total
consumption by all households equals total production by all producers

∑
h

ch = ∑
r

yr.

6.2 Characterization

Index productivities z(t) by a scalar t and assume that the status-quo corresponds to
z(0). We are interested in understanding how aggregate efficiency evolves as a function
of t. For concreteness, we refer to t as “time”, though this is simply a label for the scalar
indexing primitives, and the economic environment is static.

Proposition 2 (Exact Characterization of Efficiency). Theorem 1 implies that aggregate effi-
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ciency, A(t), is equal to

A(t) = ∑r zr(t)∑h 1[lh(t) = r]

∑h

ϵhl0h
ϵhlh

c0
h

, (7)

where
lh(t) = arg max

l
{uh(wl(t), l)} = arg max

l
{uh(zl(t), l)}. (8)

Proposition 2 provides a relatively straightforward way to calculate aggregate effi-
ciency conditional on knowing the status-quo allocation and the primitive preferences
and technologies. First, compute location decisions in the competitive equilibrium, given
z(t), using (8) and then evaluate (7) for A(t). The proof and intuition for this result are
identical to the derivation of (5) in Example 4.

As we discuss at the end of this section, Proposition 2 can be extended to allow for
different household types, say with different productivities in different locations, rela-
tively easily. Proposition 2 can also be applied to characterize efficiency for subsets of
households. Suppose we apply (7) and (8) to only a subset of households H′ ⊂ H. In this
case, A(t) measures the maximum contraction in the consumption possibility set, among
the households in H′, holding fixed all other households’ consumption choices, such that
it is possible to keep every household in H′ indifferent. This is useful for defining and
studying efficiency by group: for example skill level, or initial location, etc.

Although Proposition 2 is useful for computing A(t) given a fully specified struc-
tural model, it suggests that we need to model both the specific form of utility functions
uh(ch, l) as well as relative ϵhr/ϵhl0

h
at the individual level in order to calculate aggregate

efficiency. We now provide an alternative characterization, which shows that we do not
need direct knowledge of either the utility functions or the distribution of ϵ’s and can get
by if we know the induced aggregate demand for each location as a function of the vector
of real wages.

To do this, denote the share of households living in region r at time t by

Lr(t) =
∫

1[lh(t) = r]dh,

where lh(t) is the location of household h in the competitive equilibrium at time t. That
is, lh(t) solves the problem in (8). To characterize nonlinear changes, define the set of
households that move from r to r′ to be

Lr→r′(t) =
∫

1 [lh(t0) = r] 1
[
lh(t) = r′

]
dh.
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The sales share of location r, relative to GDP, is given by

λr(t) =
wr(t)Lr(t)

∑r′ wr′(t)Lr′(t)
.

The following proposition shows that A(t) satisfies a differential equation.

Proposition 3 (Differential Equation for Aggregate Efficiency). Aggregate efficiency satisfies
the following differential equation

d log A
dt

= ∑
r

λr(t)
d log zr

dt
+ ∑

r

[
∑
r′

wr′(t)− wr(t)
∑r′′ wr′′(t)Lr′′(t)

dLr→r′

dt

] [
1 − A(t)

zr(t)/zr(t0)

]
,

with initial condition log A(0) = 0.

To understand this equation, first observe that at t = 0, the final term in the square
bracket is zero, and we are left only with the first summands, consistent with Proposi-
tion 1. The intuition is starightforward: households on the margin between being in one
location or another do not boost aggregate efficiency by moving, since any change in real
wages they experience are exactly offset by changes in the amenity values of the place
they move to.

The second-summand captures a selection effect that accounts for the fact that, for
t > 0, households that change locations were not indifferent between those two locations
in the status-quo. To understand this effect, suppose real wages are constant in every
region, except region r′, where the real wage grows. Suppose that r′ also happens to have
the highest initial real wage. These two assumptions imply that (wr′(t)−wr(t))

dLr→r′
dt > 0.

In words, households move to r′, and doing so raises their real wage since r′ has the
highest real wage. At t > 0, aggregate efficiency growth (relative to status-quo) is higher
than regional productivity growth (relative to status-quo) in every region experiencing
outmigration: A(t) > 1 = zr(t)/zr(0) for every r ̸= r′. Hence, the final summand is
negative. That is, as t gets larger, the households that move to r′ experience a larger
reduction in amenity-values when they move than the previous households that moved
before them, and this depresses aggregate efficiency growth relative to what is implied
by the first summand. Intuitively, a lower amenity value for the households moving to
region r′ requires more goods to compensate them, reducing aggregate efficiency.

Importantly, Proposition 3 expresses the change in aggregate efficiency without direct
reference to the distribution of taste parameters. Instead, aggregate efficiency is expressed
in terms of primitive technology shocks, d log z, and observables like sales shares in each
location r, wage differentials, and the number of households that switch from one location
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to another. Given these observables, this expression holds regardless of the functional
form of the utility function and the distribution of tastes.

To get more intuition for changes in aggregate efficiency, the next proposition provides
a second-order approximation.

Proposition 4 (Second-Order Approximation of Aggregate Efficiency). At t = 0, the change
in aggregate efficiency is, to a second-order approximation, given by

∆ log A ≈ ∑
r

[
λr +

∆λr

2

]
∆ log zr +

1
2 ∑

r,r′

[wr′ − wr]

∑r′ wr′Lr′
∆Lr→r′

[
∆ log zr − ∑

i
λi∆ log zi

]

The first summand, ∑r λr∆ log zr, is just the first-order approximation. The second
summand, 1/2 ∑r ∆λr∆ log z are the nonlinearities terms emphasized by Baqaee and Farhi
(2019) — if Domar weights λr rise for options where productivity ∆ log zr grew, then this
nonlinearity amplifies the beneficial impacts of positive productivity shocks (and miti-
gates the harmful effects of negative productivity shocks). In other words, positive pro-
ductivity shocks in region r are more beneficial if the sales share of r grows with the shock.
The sum of ∑r λr∆ log zr and 1/2 ∑r ∆λr∆ log z equals multifactor productivity growth to
a second-order.

The final summand is new relative to Baqaee and Farhi (2019) and cause ∆ log A to not
equal multifactor productivity growth to a second-order. This term states that migrations
from r to r′ that raise real wages for households that move reduce aggregate efficiency
if productivity growth in r is less than average. Intuitively, this is because households
leaving r are relatively less willing to live in other locations as the shock grows, and hence
the gains they experience from relocating are smaller.

A crucial fact about Proposition 4 is that it shows what information is required to be
able to calculate changes in aggregate efficiency, to a second-order, in the data. If the
economist can observe initial sales and wages, and can, through instruments, identify the
change in sales and migration decisions induced by shocks, then calculating ∆ log A, up
to a second order, is simple calculation that does not require any additional assumptions
about preferences.

Propositions 3 and 4 are useful because they relate aggregate efficiency to statistics
of the equilibrium allocation. However, applying them requires knowledge of migration
decisions. To fill in this missing step, define the vector-valued function L(w) which maps
vectors of real wages w to the share of households that choose each option. In particular,
L(w) aggregates equilibrium individual location choices given by (8). We refer to L as
the location demand system.
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To make L(w) more concrete, we provide one example of a location demand system
below. We do not impose this functional form for our theoretical results, but simply use
it for illustration.

Example 9 (Isoelastic Demand System). Suppose that the location demand system is

Lr(w) =
Brwθ

r

∑r′ Br′wθ
r′

, (9)

where Br > 0 are some scalar demand shifters. This demand system is very popular in
the spatial literature (see e.g. Redding 2016, and the literature review in Redding and
Rossi-Hansberg 2017). In Section 7 we return to this demand system and discuss the
distribution of household-level taste parameters that can rationalize it. Since our results
do not depend directly on the distribution of taste shifters, beyond their effect on (9), we
do not state the underlying taste parameters in this section.

The following proposition uses the cross-price elasticities of the location demand sys-
tem to pin down equilibrium allocations. This can then be fed into Proposition 3 to con-
duct counterfactuals.

Proposition 5 (Characterization of Equilibrium Allocation). In equilibrium, the number of
movers between options satisfies

dLr→r′

dt
=

[
∂Lr

∂ log wr′

d log wr′

dt
− ∂Lr′

∂ log wr

d log wr

dt

]
1 [d log wr′ ≥ d log wr] .

The real wage in each region is equal to the productivity of that region wr(t) = zr(t). The number
of people choosing each option r is given by the location demand system Lr(t) = Lr(w(t)), and
the Domar weight of each region satisfies

λr(t) =
wr(t)Lr(t)

∑r′ wr′(t)Lr′(t)
.

Proposition 5 does not impose a functional form on the location demand system be-
yond differentiability. Proposition 5 pins down equilibrium allocations at t in terms of
the primitive productivity shocks z(t) and the location demand system. Therefore, given
knowledge of the location demand system, one can easily solve for aggregate efficiency,
without making direct assumptions about the distribution of household tastes. Moreover,
whereas real wages, sales, and population shares in each location at t are ultimately only
a function of t, the number of switchers between r and r′ depends both on z(t) and z(0).
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The following example illustrates using the isoelastic demand system.

Example 10 (Switchers in Isoelastic Location Demand System). Assume that the isoe-
lastic location demand system in (9). The share of switches from r to r′ satisfies the differ-
ential equation

dLr→r′

dt
= θLr(t)Lr′(t)

[
d log wr′

dt
− d log wr

dt

]
1

[
d log wr′

dt
≥ d log wr

dt

]
.

The share of households switching from r to r′ is positive only if the real wage in r′ is
rising faster than in r. The intensity of the flow is increasing in the elasticity of location
demand, and the initial share of the population in r and r′. Plugging this equation into
Proposition 5 and Proposition 3 gives us an exact characterization of changes in aggre-
gate efficiency that depend only on cross-price elasticities of the location demand system,
initial expenditures, and primitive shocks.

Extension with household-by-location productivity differences In this section, we as-
sumed for simplicity that there is no household-by-location productivity differences. Our
results can be extended to cover such an environment. For example, if there are idiosyn-
cratic productivity differences, then Proposition 2 must be modified in the following way.

Proposition 6 (Exact Characterization of Efficiency with Idiosyncratic Productivity). The-
orem 1 implies that aggregate efficiency, A(t), is

A(t) = ∑r zr(t)∑h ahr1[lh(t) = r]

∑h

ϵhl0h
ϵhlh

c0
h

,

where ahr is household h’s productivity in location r. The location choices that solve this problem
are given by

lh(t) = arg max
l

{uh(wl(t)ahl, l)} = arg max
l

{uh(zl(t)ahl, l)}.

The rest of the results can also be extended along similar lines, but we do not state
them here for brevity. Intuitively, we would apply each result conditioning on idiosyn-
cratic household-level productivity and then aggregate up over household productivity
shifters.
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7 Comparison with “Expected Utility”

In contrast to our approach in this paper, by far the most common way to evaluate ef-
ficiency and aggregate welfare in these models is to use the so-called “expected utility”
of the representative agent. We discuss this alternative approach, and contrast it to ours,
in this section. We show that this common approach depends on an untestable cardinal
assumption about utility functions that cannot be rejected by any conceivable data. This
would be fine except that, other equally untestable assumptions, which are also consis-
tent with the same data generating process, will give different answers. This stands in
contrast to our measure of aggregate efficiency which depends only on ordinal properties
of utility functions (i.e. it is falsifiable).

We begin by defining the common measure used in the literature, which we refer to as
average utility.

Definition 6 (Average Utility). The average utility, sometimes also called expected utility
or utilitarian welfare, is given by

U(c, l) =
∫

uh(ch, lh)dh. (10)

The typical approach uses U(c, l) to measure aggregate welfare or efficiency. We de-
liberately do not refer to U as “expected utility,” which is how it is sometimes referred to
in the literature. The reason is because expected utility is formally defined to be a rep-
resentation of an ordinal preference relation of a single agent over lotteries of allocations
(see, e.g., chapter 6, of Mas-Colell et al., 1995). In this model, each household has fixed
preferences uh and there is no lottery across household tastes. This is to say, no household
ever makes a choice about the parameters of their utility function, which means that we
cannot elicit preferences over tastes from observed choices. Indeed, even if households
were said to have preferences over their tastes, such “meta” preferences would have no
testable implications.6

While (10) is a Bergson-Samuelson social welfare function, it is one choice among
many possible social welfare functions, and there is nothing in the data that helps pin
it down. To illustrate the fact that (10) is not pinned down by any conceivable choice

6This state of affairs is different to the veil-of-ignorance argument as in Harsanyi (1955). The standard
veil of ignorance approach assumes all households have the same preference relations (down to risk pref-
erences), and then asks how each household values the distribution of allocations (not utilities). Since all
households have the same preferences, they all assign the same certainty equivalent value to this lottery. In
this case, households have different preferences, so the veil of ignorance argument gives a different answer
for each household. See Eden (2020) for a modern discussion of this point.
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data, we provide a specific example. Suppose that household preferences take the form

uh(ch, lh) = ∑
r

ϵhrch1[lh = r],

where household taste parameters for choosing different options consist of two compo-
nents:

ϵhr = ϵ̄hεhr,

where the vector {εhr}r > 0 is distributed according to the distribution of identical and
independent Fréchet random variables with distribution function

G(εhr) = exp[−Brε−θ
hr ],

for some θ > 0.
The location demand system associated with these preferences is the familiar and pop-

ular isoelastic one in (9). Note that this location demand system can be derived without
making any assumptions about the distribution of the household-level shifter ϵ̄h and its
dependence structure with the household-by-option shifters εhr. (For example, it could
be that household who have a high taste for location r also have high values of ϵ̄h.)

The reason that the location demand system does not depend on ϵ̄h is that h’s rankings
of options depend only on the relative taste shifters, ϵhr/ϵhr′ , not their absolute values.
Hence, since the value of ϵ̄h cancels out of this ratio, it has no bearing on the choices any
household makes and therefore assumptions about it have no testable implications. In
particular, the induced location demand system L(w) is the same regardless of assump-
tions about the distribution of the household-level ϵ̄h parameter.

The following proposition summarizes the implications for average utility.

Proposition 7 (Average Utility with Fréchet Distribution of Tastes). The average utility as-
sociated with the utility functions {uh} in a competitive equilibrium

U = E
[
ϵ̄hE

[
max

r
{wrεhr}

∣∣∣ ϵ̄h

]]
. (11)

Assuming that the collection of random variables {ϵhr} are independent of ϵ̄h, then

U = Γ
(

θ − 1
θ

)
E [ϵ̄]

(
∑

r
Brwθ

r

) 1
θ

, (12)

as long as θ > 1, where Γ is the gamma function. If θ < 1, then average utility, U, diverges.
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The typical unstated assumption in the literature is that ϵ̄h = 1 for every h (which
means that it is independent of εhr). However, by inspection, Equation (11) shows that this
assumption is not without loss of generality. The value of U depends on the relationship
between ϵ̄h and εhr. To see one extreme case, suppose that ϵ̄h is a Dirac delta function
at (ϵh1, . . . , ϵhR) = (1, . . . , 1). In this limit, U = maxr{wr}. Hence, with this alternative
assumption about ϵ̄h, we arrive at very different results about the change in U due to a
change in observables. Further, this alternative distribution is also consistent with the
same underlying preference relations. This example highlights the fact that the value
of U is not disciplined by choice data but instead depends on an untestable assumption
about the joint distribution of the level of taste shifters. Choice data can only ever identify
relative taste-shifters — not their levels. This is why it is not appropriate to refer to U as an
expected utility function — it should instead be thought of as a social welfare function,
which implicitly places weights on households based on the overall level of their ϵ’s.7

Note that this issue never arises for our measure of efficiency, because it only depends on
ordinal properties of preference relations, not cardinal properties.

However, even if we impose the typical and untestable assumption that ϵ̄h = 1 for
every h, this measure U does not coincide with our measure of efficiency. An obvious
way to see the difference is to note that U diverges to infinity if the (partial) elasticity
of supply in a location to the real wage is below θ < 1. Of course, in practice, these
elasticities may easily be below one (i.e. a one percentage point increase in the wage
raises the share of population choosing an option by less than one percent). This poses no
issues for our measure of efficiency, but the average utility formulation diverges in this
case.

For the isoelastic demand system, there is another justification that distinguishes (12),
from any arbitrary (11). This justification is not based on invoking utilitarianism or a
fictional ex-ante expected utility problem before households know their tastes. Instead,
(12) can be distinguished from other choices of (11) by the fact that it corresponds to the
preferences of a positive representative agent. That is, a representative agent that maxi-
mizes the preferences in (12) chooses population shares and region-level consumptions
that coincide with the competitive equilibrium allocations. However, whereas a posi-
tive representative agent’s choices coincide with the collective actions of the underlying

7This issue is not limited to having multiplicative taste shocks. The same type of issue also arises if
taste shifters are additive — in this case, what matters is the difference in taste shifters, rather than their
ratios. But once again, average utility depends on the level of taste shifters. For example, if we multiply
consumption and taste shifters by a different positive constant ēh, we preserve the same choices. If ϵ̄h varies
systematically, this changes both expected utility and changes in expected utility in response to changes in
primitives.
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households, as discussed by Kirman (1992) or Tito (2016), the welfare of a positive repre-
sentative agent need not have any previleged position in terms of its welfare implications
for the underlying agents.

To better understand this, consider the following proposition, which shows that, to a
first-order approximation, the change in average utility does not coincide with the change
in ∆ log A. In particular, ∆ log A obeys a version of Hulten’s theorem, and hence, is first-
order equal to the change in multifactor productivity as calculated by national income
accountants (see, e.g., chapter 3 in OECD, 2001), the change in U does not have this prop-
erty.

Proposition 8 (First-Order Changes in Average Utility with Fréchet Distribution of Tastes).
Consider the environment in Section 6. Suppose that U takes the common form in (12). Then, to
a first-order approximation,

∆ log U = ∑
r∈R

Lr

∑r′ Lr′
∆ log zr.

This proposition, which is easy to derive given (12), shows that ∆ log U and ∆ log A
are not the same, even to a first-order approximation, unless the population share in each
region coincides with the sales share of that region. One prominent example is when
there is no heterogeneity in tastes (e.g. θ → ∞). However, outside of this limit, the two
measures are generically different.

8 Conclusion

We illustrate how to compute aggregate efficiency in models with heterogeneous workers
making discrete choices. We focus on highly stylized economies with perfect competition
and no unpriced spillovers or externalities. This helps to isolate the differences between
our approach and the extant literature in a simple benchmark environment. In ongoing
work, we extend our analysis to cover inefficient economies, and use it to analyze distor-
tions in location choices.
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