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Abstract

In this paper we study aggregate efficiency when households have heterogeneous

preferences and outcomes. We generalize the consumption-equivalent variation of

Lucas (1987) to a multi-agent setting: we ask by how much can the consumption-

possibility set contract while keeping every agent at least indifferent to her status–quo

allocation? The resulting scalar equals the resources left over after everyone has been

compensated; efficiency rises whenever the same welfare as in the status-quo can be

achieved with less resources. We show how every result about computing welfare

of a representative agent with homothetic preferences can be converted into a result

about aggregate efficiency with heterogeneous (and potentially non-homothetic) pref-

erences. We characterize this measure in terms of initial expenditure shares and elas-

ticities of substitution in both efficient and inefficient economies, and show how to

apply our results to study, among other things, the effects of productivity shocks, the

gains from trade, and losses from misallocation, with and without costly redistribu-

tion.
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skhoki, Pablo Fajgelbaum, Yuhei Miyauchi, Gianluca Violante, and Pierre-Olivier Weill for their comments.
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1 Introduction

A central task of macroeconomics is aggregation: compressing disparate data about the
economic activity of firms and households into a handful of numbers, like aggregate
output and productivity, that convey useful and welfare-relevant information about the
economy. When there is a single final good that can be costlessly transferred across in-
dividuals, measuring aggregate output is uncontroversial: simply add up units of that
good. Real economies, however, contain many goods consumed by households that dif-
fer in tastes, wealth, and the prices they face. This heterogeneity, now central to modern
macroeconomics, makes aggregation a hard but essential problem.

The literature that studies heterogeneity in production, e.g. multiple goods, heteroge-
neous firms, and input-output networks, typically imposes a single, homogeneous final
goods aggregator.1 Under this assumption, changes in aggregate output and efficiency
can be unambiguously quantified using the consumption-equivalent variation of Lucas
(1987), which asks: by how much must the final consumption bundle be scaled to leave
the representative agent indifferent relative to some baseline status-quo. If the answer is
less than one, then aggregate efficiency has increased relative to the baseline, because we
can make the agent indifferent and still have goods left-over.

By contrast, the literature that focuses on household heterogeneity has not settled on a
single measure of aggregate output or efficiency. Although it is common to report aggre-
gate measures, different papers use different metrics. Common approaches to aggregat-
ing across households are to: (1) use social welfare functions, (2) sum up compensating
variations, or (3) rely on aggregate quantity indices like (chain-weighted) real consump-
tion or GDP. However, each is known to have limitations. For example, social welfare
functions hinge on normative choices like Pareto-weights and the degree of inequality-
aversion, and so embed subjective (i.e. not falsifiable) interpersonal comparisons. They
are also not invariant to monotone transformations of utility functions. On the other
hand, the sum of compensating variations, sometimes called Kaldor-Hicks efficiency, suf-
fers from paradoxes in general equilibrium and requires lump-sum transfers to be in-
terpretable. Quantity indices, like chain-weighted real consumption, have pathological
properties (like chain-drift) and do not typically account for time and risk.2

1See, for example, the recent surveys by Hopenhayn (2014), Carvalho and Tahbaz-Salehi (2019), and
Baqaee and Rubbo (2023).

2We discuss these issues in the paper, but we are not the first to point out these shortcomings. For
the paradoxes and limitations of the sum of compensating variations, see Boadway (1974), Blackorby and
Donaldson (1990), and Schulz et al. (2023). For pathological properties of chain-weighted quantity indices,
see the discussion of chain-drift and path-dependence in Hulten (1973), and Baqaee and Burstein (2023).
For how traditional index numbers can be adapted to account for time and risk see, e.g., Alchian and Klein
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In this paper, we consider an alternative approach to aggregating across consumers
that generalizes Lucas’ consumption-equivalent variation, and does not suffer from the
limitations described above. To measure changes in aggregate efficiency we ask: by how
much can the consumption-possibility set contract while keeping every agent at least
indifferent to her status–quo allocation? The resulting scalar measures the resources left
over after everyone has been compensated; efficiency rises whenever the same welfare as
in the status-quo can be achieved with less resources.3

If there is one agent and the consumption-possibility set is a single allocation, then
this is exactly the definition used by Lucas (1987). Our measure extends this definition by
allowing for multiple agents, with different preferences, and accommodates a wide range
of mechanisms through which allocations are decentralized (e.g. competitive markets,
search-and-matching, bargaining, imperfect competition, etc.) as well as limits to redis-
tribution (e.g. limited taxes or costly transfers). Our definition also builds on and extends
ideas in Allais (1979), Debreu (1951, 1954), and Luenberger (1996).

This measure, which we refer to as the aggregate consumption-equivalent variation, has
some attractive properties. First, unlike social welfare functions, it introduces no free pa-
rameters and answers a counterfactual question in terms of observables. Second, it does
not take a normative stance on the optimal distribution of resources across individuals
beyond compensating every agent relative to the status-quo. For example, if aggregate ef-
ficiency increases and there are extra resources left over after everyone has been compen-
sated, our measure takes no stance on who should get those resources. Third, we show
that it does not suffer from the paradoxes that afflict Kaldor-Hicks and chain-weighted
indices, nor does it require the availability of lump-sum transfers to be interpretable.

We characterize this measure of aggregate efficiency in terms of observables and gen-
eralize well-known results in representative-agent economies to heterogeneous-agent set-
tings. This paper also has two stand-alone companions: Baqaee and Burstein (2025a) and
Baqaee and Burstein (2025b), where we apply the framework developed in this paper to
study misallocation due to financial market incompleteness (in both closed- and open-
economies) and aggregate efficiency in random utility models with discrete choice.

The structure of the paper is as follows. In Section 2, we define changes in aggregate
efficiency in abstract terms and present a key result. Theorem 1 shows that the prob-

(1973), Del Canto et al. (2023), Fagereng et al. (2022), and Baqaee et al. (2024).
3We refer to this as efficiency since it summarizes the amount of resources that can be saved while

attaining indifference. We do not refer to this as a measure of aggregate welfare since aggregate welfare is
typically defined via a social welfare function and embeds normative judgement, whereas our measure is
simply the answer to a counterfactual question about the amount resource savings over and above what is
needed to keep every agent at least indifferent.
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lem of calculating aggregate efficiency, using aggregate consumption-equivalents, can be
converted into an equivalent fictional utility-maximization problem for a representative
agent with homothetic preferences. This forms the basis for all other results in the pa-
per because it allows us to port tools used to study the welfare of representative-agents
with homothetic preferences, like Hulten (1978), Harberger (1964), Arkolakis et al. (2012),
Petrin and Levinsohn (2012), and Baqaee and Farhi (2019c, 2020) to economies with het-
erogeneous agents.

The abstract environment in Section 2 does not impose much structure on how con-
sumption possibility sets come about. In Section 3, we specialize the environment to
general equilibrium economies with prices, distorting wedges, and lump-sum transfers.
In this section, we define some popular alternative measures of efficiency used in the lit-
erature, so that we can compare and contrast our approach to these alternatives. Namely,
we define real output (using a Divisia or chain-weighted index), Kaldor-Hicks efficiency
(which compares total income to the sum of compensating variations), and the welfare
of a positive representative agent (if such an agent exists). We establish an important
equivalence result: if all households have identical homothetic preferences, and face the
same relative prices, then our measure of aggregate efficiency (with lump-sum transfers)
coincides with the aforementioned alternatives. However, outside of these common but
restrictive assumptions, our measure does not coincide with these alternative measures.

A key result in Section 3 is that our measure of aggregate efficiency can be calculated in
general equilibrium settings using the notion of a compensated equilibrium. The compen-
sated equilibrium is the general equilibrium of an economy with the same technologies
and distortions as the real economy, but where there is a fictional representative agent
with homothetic preferences. We show that the welfare of this fictional representative
agent measures the change in aggregate efficiency. This is an application of Theorem 1
to settings where allocations are decentralized via general equilibrium, and this result
makes it straightforward to use tools and methods from representative-agent economies
to analyze aggregate efficiency with heterogeneous agents.

Section 4 restricts attention to perfectly competitive economies (assuming away dis-
tortions) where the welfare theorems hold. We show that, to a first-order approxima-
tion, Hulten (1978) applies to our measure of aggregate efficiency unaltered. That is, to a
first-order, our measure of changes in aggregate efficiency coincide with total factor pro-
ductivity as measured by the Solow residual. We then derive a version of Hulten (1978)
that applies to aggregate efficiency nonlinearly and extend the global characterization in
Baqaee and Farhi (2019c) to economies with heterogeneous agents and potentially non-
homothetic preferences. We show that changes in aggregate efficiency depend only on
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expenditure shares and elasticities of substitution in the status-quo. We also generalize
the sufficient-statistics of Arkolakis et al. (2012), developed for single-agent economies, to
quantify the gains from trade in economies with heterogeneous agents.

In Section 5, we open the door to distortions (but keep lump-sum transfers). We de-
rive versions of Hsieh and Klenow (2009), Petrin and Levinsohn (2012), Harberger (1954,
1964), and Baqaee and Farhi (2020) that apply to distorted economies with heterogeneous
agents. In particular, we derive a version of the famous Harberger triangles formula that
can be used to quantify misallocation in general equilibrium with heterogeneous agents
and with unrestricted preferences. We show that there is a sense in which misallocation
losses in the heterogeneous agent model are lower than in a representative agent model.
We show that our Harberger triangles formula naturally discards dispersion in wedges
that occur across households, since such wedges are pure transfers and do not represent
(Pareto) inefficiency.

In Section 6, we consider economies without lump-sum transfers. We discuss how
Theorem 1 can be used to analyze changes in aggregate efficiency when redistributive in-
struments are limited. We show that, starting in perfect competition, the change in aggre-
gate efficiency due to a change in primitives is, to a first-order, the same as Hulten (1978).
To a second-order, the change in efficiency is equal to what would have happened with
lump-sum transfers (characterized in Sections 4 and 5) minus the additional Harberger
triangles caused by inefficient redistribution (which are zero if lump-sum transfers are
available). We provide some worked-out examples to show how costly redistribution al-
ters the gains from trade relative to autarky and the benefits from skill-biased technical
change.

Throughout the paper, we use prices and quantities in the compensated equilibrium
to characterize aggregate efficiency in different ways. Since the compensated equilibrium
is just the general equilibrium of a fictional representative agent economy, a relatively
well-understood object, we defer a systematic characterization of the compensated equi-
librium to the end of the paper. Section 7 provides an explicit characterization of how
prices and quantities change in the compensated equilibrium as a function of elasticities
of substitution, initial expenditure shares, initial wedges, and changes in primitives.

Related literature. Our approach to measuring aggregate efficiency is related to willingness-
to-pay based measures and have a very long history dating all the way back to at least
Dupuit (1844). For example, the compensating variation, and sum of compensating vari-
ations, in Hicks (1939) and Kaldor (1939), are special cases. Furthermore, the notion of so-
cial surplus in Allais (1979), the coefficient of resource utilization in Debreu (1951, 1954),

5



the measure of efficiency in Farrell (1957), and the benefit function in Luenberger (1996)
are all related to our measure. Our contribution relative to these works is to provide a
characterization without assuming either Pareto efficiency or even markets (Theorem 1),
to explicitly allow for limited or costly redistribution, and to apply our measure to mod-
ern models.

Our paper is also related to cost-benefit analysis, typically performed by using the sum
of compensating variations, as in Harberger (1971), and related ideas like the marginal
value of public funds, Hendren and Sprung-Keyser (2020). The idea behind these mea-
sures is to ask: “after the winners compensate the losers using lump-sum transfers, is
there still money left on the table?” Our measure of efficiency coincides with these mea-
sures when both welfare theorems hold and the consumption-possibility set is linear.
However, outside of these cases, the two measures are different. First, if the consumption-
possibility set is nonlinear, then as shown by Boadway (1974), a pure transfer between
agents causes the sum of compensating variations to exceed initial aggregate income. In-
tuitively, the transfer lowers prices for goods that are relatively more valued by losers
than winners. Hence, it is possible to compensate the losers using the post-transfer prices
and still have money left-over. Our measure, which can be defined even when prices do
not exist, does not have this property.

Second, unlike the sum of compensating variations, our measure does not presup-
pose that lump-sum transfers are feasible. In this sense, our approach has similarities to
Schulz et al. (2023), who generalize the sum of compensating variations to allow for lim-
ited redistribution.4 Our paper complements and differs from Schulz et al. (2023) in many
ways, the most important being a difference in focus. They consider economies with a sin-
gle consumption good, focusing their attention on a mechanism design problem where
lump-sum taxes are unavailable because of asymmetric information. Although our for-
malism and definitions can be applied to such economies, we do not focus on these issues.
Instead, we focus on allowing for multiple goods and heterogeneity in preferences and
relative prices faced by consumers. This means that even with perfect information and
lump-sum transfers, there are interesting questions about how to aggregate across con-
sumers that consume and value different goods. Even when redistribution is restricted,
we do not explicitly consider mechanism design problems.

A different approach to aggregation altogether, following Bergson (1938) and Samuel-
son (1983), is to use a social welfare function to evaluate outcomes. A prominent example

4In response to a shock, they consider a tax reform that makes households indifferent to the status-quo
and then measures the monetary value of aggregate welfare gains or losses by the fiscal surplus from this
reform.
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is the behind the veil-of-ignorance measure of Harsanyi (1955). Social welfare functions
are by far the most common approach in the modern literature to aggregating across het-
erogeneous agents.5 Our paper, which instead looks for and quantifies the potential for
Pareto improvements (i.e. compensating everyone and looking to see if resources are left
over), provides an alternative to this methodology.

Following in the social-welfare-function tradition, a recent set of papers, including
Bhandari et al. (2021), Dávila and Schaab (2022, 2023), and Donald et al. (2023) provide
first-order decompositions of changes in aggregate welfare using social welfare functions
comparing. Our goal in this paper is different: we do not provide decompositions of so-
cial welfare functions, but instead, define and characterize aggregate efficiency directly
as an answer to a counterfactual question. The decompositions in the papers mentioned
above contain components the authors refer to as capturing efficiency. However, since
our objective is different, our notion of efficiency is also generically different to the effi-
ciency components in these papers. Defining efficiency directly, instead of as part of an
approximate decomposition, is useful because it means that we can study large changes.6

In terms of the tools and methods, our paper is closely related to the literature that
studies the macroeconomic consequences of microeconomic productivity changes and
wedges. For productivity changes, this includes Gabaix (2011), Acemoglu et al. (2012),
Baqaee and Farhi (2019c) and others. For wedges, this includes Harberger (1954), and
more recently, Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Bigio and La’O
(2016), Liu (2017), Baqaee and Farhi (2020), among others. We relax the assumption typ-
ically maintained in both of these literatures that households have common preferences
and face common prices.7

Finally, our paper is also related to the gains from trade with heterogeneous agents,
since one of our running examples considers the costs of autarky. Much of the work on in-

5There is a branch of the literature that assumes observed allocations can be rationalized by maximizing
some social welfare function within some parametric class, estimates this function, and uses it to conduct
policy analysis (see Heathcote and Tsujiyama, 2021 and the references therein). This is equivalent to as-
suming there exists a normative representative agent: a hypothetical single decision-maker whose utility
function is maximized by observed allocations (Chapter 4 Mas-Colell et al., 1995). Our approach is differ-
ent since we do not need to assume the existence of either a positive nor normative representative agent.
Furthermore, even if a normative representative agent exists, there is nothing to say that its preferences are
privileged over any other social welfare function (see Example 6 below).

6Whereas infinitesimal changes in our measure of efficiency can be integrated to study large changes,
integrals of components of social welfare are path-dependent. To see this point, suppose we approximately
decompose changes in some function y = f (x1, x2) into dy ≈ (∂ f /∂x1)dx1 + (∂ f /∂x2)dx2. Then we can
write ∆y =

∫
(∂ f /∂x1)dx1 +

∫
(∂ f /∂x1)dx1 but, unless f (x1, x2) is linear in x1 and x2, the size of each

component of this nonlinear decomposition depends on the arbitrary path of integration.
7One exception is Bornstein and Peter (2024), who study misallocation with differences in tastes and

markups across households. In their setting, symmetry and the law-of-large numbers, implies that every
households’ problem is identical despite the fact that households have different preferences.
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ternational trade with heterogeneous agents focuses on the distributional effects of trade.
Some examples of papers that also calculate aggregate welfare are Antras et al. (2017) and
Galle et al. (2023) (using an Atkinson (1970)-style social welfare function with inequality
aversion), Kim and Vogel (2020) (using first-order changes in the sum of compensating
variations), and Rodríguez-Clare et al. (2022) (using a population-weighted average of
welfare gains across regions), all of which differ from our measure of aggregate efficiency.

2 Abstract Definition and Characterization

We consider an economy populated by households indexed by h ∈ {1, ..., H}. Household
h has ordinal preferences ⪰h over commodity vectors ch ∈ RN, where N is the number of
goods.8 Assume preferences are represented by utility functions uh(ch),9 indirect utility
functions vh (p, Ih) and expenditure functions eh (p, u), where p and Ih denote prices and
income/wealth. Let c ∈ RH×N denote a matrix whose hth row, denoted by ch equals the
consumption vector of household h. We refer to c as a consumption allocation.

Fix some consumption allocation, denoted by c0, as the status-quo. Consider some
feasible consumption allocation set, C ⊂ RH×N. The feasible set C is a function of deeper
primitives, like technologies and policies. We wish to define a scalar that measures the
change in efficiency, relative to the status-quo, from using technologies or having policies
that give rise to the feasible allocation set C.

There are two challenges that must be overcome. First, since preferences are ordinal
and utility functions are only defined up to monotone transformation, our measure of
aggregate efficiency cannot be measured in terms of utils (which are meaningless). This
requires picking a “unit” of account for aggregate efficiency. Second, different feasible
allocations in C are viewed differently by different households — each allocation entails
taking a stance on how surplus or loss is divided among households. To avoid both of
these problems, we build on an approach to measuring aggregate efficiency pioneered by
Allais (1979), Debreu (1951), Debreu (1954), Lucas (1987), and Luenberger (1996).

Definition 1 (Aggregate Consumption Equivalent Variation). We measure aggregate ef-
ficiency by the Aggregate Consumption-Equivalent Variation — the largest uniform contrac-
tion (or smallest uniform expansion) of the feasible consumption set such that it is possi-
ble to make every household indifferent between the contracted allocation and the status-

8We assume that preferences are continuous and locally nonsatiated.
9That is, for each household uh(ch) ≥ uh(c

′
h) if, and only if, ch ⪰ c′h. When preferences are homothetic

(i.e. whenever ch ∼h c′h then λch ∼ λc′h for every λ > 0), then we can represent preferences with a utility
function that satisfies uh(λch) = λuh(ch).
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quo allocation. Formally,

A(c0, C) ≡ max
{

ϕ ∈ R : there is c ∈ ϕ−1C and uh(ch) ≥ uh(c
0
h) for every h

}
. (1)

We refer to A as aggregate efficiency throughout the paper. The change in aggregate
efficiency relative to the status-quo is

∆ log A(c0, C) = log A(c0, C)− log A(c0, c0) = log A(c0, C).

For concreteness, say, ∆ log A = 0.2, then this means that after making everyone at
least as well off as in c0 there are 20 log points (or exp(0.2) − 1 ≈ 22%) of every good
left over to be distributed as desired. Agents may not be consuming the same bundle as
in the status-quo after they are compensated — we only require that they be indifferent
to the status-quo. If there is a single household and C is a consumption allocation, then
A is the same as the consumption-equivalent notion define by Lucas (1987). As in both
Lucas (1987) and Debreu (1951), ∆ log A treats all commodities symmetrically by shifting
the consumption possibility set, C, proportionately in every dimension.10

Figure 1 illustrates the change in aggregate efficiency for a simple economy with two
households, indexed by h and h′, and two consumption goods, one consumed only by h
and the other only by h′. The set C could be, but need not be, the technological Pareto
frontier. As the figure shows, if ∆ log A > 0, then it must be the case that there are feasible
allocations in C that Pareto-dominate the status-quo c0.

The measure in Definition 1 has some desirable properties: (1) it answers a counter-
factual question about observable phenomena with interpretable units. This means it
is invariant to monotone transformations of utility functions, and only relies on ordinal
properties of preference relations. (2) Our measure does not take a stance on how social

10Note that such a choice is present even with a single agent. For example, do we shrink or expand
every element in a consumption vector to reach indifference, as in the consumption-equivalent variation
in Lucas (1987), or only some components. Similarly, do we scale the whole budget set proportionally, as
in the compensating variation of Hicks (1939), or do we change individual prices of certain commodities
to reach indifference. In this sense, this choice is not special to having heterogeneous agents or not. In
general equilibrium, expanding and contracting the feasible set proportionally is isomorphic to scaling the
vector of factor endowments (including quasi-fixed factors capturing decreasing returns to scale). This is
an intuitive way to measure efficiency — reductions in necessary factor endowment quantities in order to
reach the same status-quo. Our measure of aggregate efficiency can differ from standard approaches like
using social welfare functions or chained real consumption even if there is only a single consumption good
(when there is no choice of how to expand or shrink the consumption set). To see an example, see Baqaee
and Burstein (2025a) where there is a single consumption good in a model with mobility and amenity.
Lastly, in some settings, it may be interesting to expand or shrink C in a particular direction, rather than
radially. This requires generalizing our definition to allow for non-radial expansions, as in the transferable
surplus notion in Allais (1979). We do not pursue this generalization in this paper.
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Figure 1: Aggregate efficiency is measured by the maximal radial expansion of the feasible
set necessary to achieve indifference.

surplus or losses should be divided among agents. That is, while we can assign a numer-
ical efficiency value to every feasible set of consumption allocations, C, we do not attempt
to pick a specific allocation among the possibilities as being socially “optimal.” (3) Our
definition places no restrictions on the set of redistributive tools that are available or the
mechanism by which allocations are decentralized (e.g. spot markets, search, bargain-
ing, etc.). The instruments of redistribution are implicitly embedded into the size of the
feasible set C.11 (4) This abstract definition is applicable to a wide variety of models and
circumstances, allowing for, among other things, non-homothetic preferences, discrete
choice, risk, and dynamics.

It should be noted that ∆ log A is not a social welfare function. A social welfare func-
tion is an increasing function of individual utilities. Our measure of aggregate efficiency
does not satisfy this requirement. First, it is not an increasing function of the underlying
utilities, and in fact, only depends on the initial indifference curve of each household (not
the entire preference relation). Second, ∆ log A depends on the status-quo, which means
that it is not stable across comparisons if the status-quo changes. Third, ∆ log A does not
take a stance on which point in C is “socially” optimal, unlike a social welfare function
which typically selects some specific allocation in C as the optimal one.

Aggregate efficiency gains are higher for larger sets: If C ′ ⊆ C, then ∆ log A(c0, C ′) ≤
∆ log A(c0, C). For example, if C ′ is a convex possibility set from a neoclassical economy
and C is the aggregate budget set for equilibrium prices of the same economy (so that C

11For example, for convex competitive economies, if lump-sum transfers are available, then the second
welfare theorem implies that C is the set of all Pareto-efficient allocations. However, the definition can also
be applied to economies where such transfers are not available.
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is a hyperplane that is tangent to C ′) then, given some status-quo, aggregate efficiency
gains are lower (or losses are higher) under C ′ than under C. A similar logic applies when
the curvature of C is shaped by factors that cannot be reallocated across producers (e.g.
sector-specific factors). The more curved C is, the smaller the efficiency gains are.12

To characterize ∆ log A, we prove a very useful theorem, which we make repeated
use of throughout the rest of the analysis. This theorem proves that calculating ∆ log A
is equivalent to solving a utility-maximization problem for some fictitious representative
agent. This result allows us to translate and port representative-agent results to environ-
ments with heterogenous agents.

To do this, we begin by defining homothetized transformations of individual prefer-
ences.13

Definition 2. Let uh : RN → R denote a utility representation for agent h. The homoth-
teized utility function ũh : RN → R is implicitly defined by

uh(
ch
ũh

) = uh(c
0
h).

The homothetized utility function, ũh, is homogenous of degree one in consumption
by construction. If the preference relation ⪰h is homothetic, then ũ is a cardinalization of
⪰h — in this case, ũh ranks consumption bundles in the same order as ⪰h. By construc-
tion, ũh is homogenous of degree one and normalized to equal to 1 at c0

h. Consider the
following simple example.14

Example 1 (Single good). Suppose there is a single consumption good, so uh(ch) is a
strictly increasing function of the scalar ch. In this case,

ũh(ch) =
ch

c0
h

,

regardless of the functional form of uh. That is, ũh is simply the proportional change in
the consumption good relative to the status-quo.

12Our measure of aggregate efficiency can be used to order feasible sets under a given status-quo. The
ordering of two feasible sets may flip for different status-quos, similar to Scitovszky (1941). For a fixed
status-quo, our measure of aggregate efficiency gives a unique ordering of feasible sets.

13The homothetized utility function is also called the distance function in the duality literature on opti-
mization (see, for example, Cornes, 1992).

14The magnitude of ũh(ch) is interpretable — it measures the amount the consumption bundle ch has to
be scaled to make the household exactly indifferent to the status-quo. In this sense, ũh(ch) is the household’s
consumption equivalent variation relative to the status-quo.
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If ⪰h is non-homothetic, then ũh is not a cardinalization of ⪰h (i.e. ũh does not rank
consumption allocations according to ⪰h). Figure 2 graphically depicts indifference curves
of ũh — they are radial expansions of the status-quo indifference curve defined by uh(ch) =

uh(c
0
h). When ⪰h is homothetic, all indifference curves are radial expansions, so that the

ranking produced by ũh coincides with the one produced by ⪰h. We provide a non-
homothetic example below.

good 1

good 2

c0
h

Figure 2: The solid blue line is the indifference curve uh(ch) = uh(c
0
h) and the dashed

lines are the indifference curves of ũh.

Example 2 (Non-homothetic CES). Consider a household with non-homothetic CES pref-
erences, as in Comin et al. (2021),

uh(ch) =

(
∑

i
(chi)

η−1
η (uh(ch))

ξi

) η
η−1

.

where η is the compensated elasticity of substitution and ξi controls income effects. Then
ũh(ch) is homothetic CES given by

ũh(ch) =
1
u0

h

(
∑

i
(chi)

η−1
η

(
u0

h

)ξi

) η
η−1

,

where u0
h ≡ uh(c

0
h) is a treated as a constant. If ξi are the same for every i, then ũh and uh

are both cardinalizations of the same preference rankings.
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We now the concept of a fictitious Hicksian representative agent.

Definition 3. The Hicksian representative agent is an agent whose preferences are repre-
sented by

U(c) = min
h

{ũh(ch)},

where ũh are homothetized utility functions.

The Hicksian representative agent has homothetic preferences and U(c) is homoge-
neous of degree one by construction. The Hicksian representative agent is a fictitious
but useful theoretical construct. We call this agent the Hicksian representative agent be-
cause if there is only one household, then the demand curves generated by U(c) are the
Hicksian or compensated demand curves for the single household at the status-quo.15

Note that, as was the case with ∆ log A, the function U(c) is also not a social welfare
function. There are two reasons for this. First, U does not depend on households’ true
utility functions, instead it depends on the “homothetized” utility functions. Second,
U depends on the minimum growth in homothetized utility relative to status-quo, rather
than the level of utility. Therefore, despite appearing similar, U is different to the Rawlsian
social welfare function, which is the minimum utility levels across all agents.

The following is a main result, because it is used to established almost every other
result in the paper.

Theorem 1 (Aggregate Efficiency by Utility Maximization). Aggregate efficiency is equal to
the value of C to the Hicksian representative agent:

A(C, c0) = max
c∈C

U(c).

Figure 3 graphically illustrates the content of Theorem 1. Rather than proportionally
shifting C to reach the indifference point, Theorem 1 states that we can instead maximize
U(c) — by shifting out the indifference curves of the Hicksian representative agent —
until reaching the boundary of C. The utility of this fictional agent is numerically identical
to the maximal reduction in C needed to reach indifference.

Theorem 1 is crucial because it converts the problem of calculating aggregate efficiency
in (1) into an equivalent utility-maximization problem. Since utility-maximization prob-
lems are common in economics, this means that Theorem 1 allows us to easily convert
results about representative agent problems into ones about aggregate efficiency with
heterogeneous agents.

15Given the interpretation of ũ(ch) in Footnote 14, U(c) is the minimum (across households) of each
household’s consumption equivalent variation.
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Figure 3: The increase in the utility of the Hicksian representative agent also measures the
amount by which C needs to shrink to ensure indifference.

Theorem 1 guarantees that maximizing U(c) yields the same number as the maximiza-
tion problem that defines A. However, unlike a social welfare maximization problem, the
specific allocation in C that maximizes U(c) has no special significance, since the primi-
tive problem defining ∆ log A is stated in terms of shrinking the possibility frontier, not
choosing an allocation inside it.16.

The rest of the paper uses Theorem 1 in different contexts to characterize changes
in aggregate efficiency in terms of observables. We begin by considering productiv-
ity changes in competitive economies, before turning attention to inefficient and non-
neoclassical economies.

3 General Equilibrium with Distortions and Transfers

In this section we set up a general-equilibrium framework that admits both distortive
wedges and lump-sum transfers. We specialize our aggregate consumption-equivalent
variation measure of efficiency to this environment and show, via Theorem 1, how to
compute it. For comparison we introduce three alternative metrics that are popular in
the literature—chain-weighted real output, the sum of compensating variations (Kaldor-

16In the special case where C is a singleton allocation (i.e. no redistribution is possible), denoted by
c′, then Theorem 1 implies that ∆ log A is the minimum of the consumption-equivalent change in welfare
across all agents comparing the status-quo, c0, to the alternative, c′. A less extreme case is when redistribu-
tion is possible among only some subset of households. For example, suppose that country h is in autarky
from the rest of the world. In this case, a Pareto improvement among all countries except h, leaving h on the
same indifference curve, yields ∆ log A = 0, since there is no way to shrink the consumption possibility set
radially without making h worse off. In such a case, we may want to redefine ∆ log A so that the shift in C
excludes goods for the household in autarky (i.e. shrinking and expanding C only along some dimensions).
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Hicks/Cost-Benefit), and the welfare of a positive representative agent—and establish,
under restrictive conditions, when all four measures coincide. The remainder of the paper
examines the more general cases in which those conditions fail, so our measure no longer
aligns with the conventional ones.

3.1 Environment and Equilibrium

Let uh(ch) represent household h’s preferences. Each household maximizes utility subject
to the budget constraint

∑
i

µhi pichi ≤ ∑
f

ωh f w f L f + Th,

where the left-hand side is total expenditures and the right-hand side is total income. As
in Arrow-Debreu, commodities could be indexed by time and state of nature. On the
left-hand side, µhi is the gross tax rate household h faces on good i, pi is the price of i
not including the tax h pays, and chi is the quantity of good i purchased by household h.
On the right-hand side, households derive income from factors and lump-sum transfers.
Households h owns a share ωh f of factor f , where w f is the wage and L f is the total
quantity of factor f . Lump-sum transfers are Th.

Producer i chooses its inputs to minimizes costs

∑
j

pjyij + ∑
f

w f li f ,

subject to production technology

yi = ziFi
({

yij
}

,
{

li f
})

,

where yi is the quantity of output, Fi is a constant-returns production function, yij are
intermediate inputs used by i produced by j, and li f are primary factors used by i. The
assumption that Fi has constant-returns is without loss of generality, since we can capture
decreasing returns using producer-specific factors. The parameter zi is a Hicks neutral
productivity shifter. The price of i is equal to an exogenous markup or tax, µi > 0, times
i’s marginal cost of production. That is, the price of i is inclusive of the wedge on i’s
output.

The assumptions that zi is Hicks neutral and that the only wedges are on gross output
are made without loss of generality. We can capture non-neutral productivity changes,
say on i’s use of an input from j, by introducing a fictitious intermediary, between i and
j, and changing its productivity. Similarly, to capture an implicit tax or wedge on i’s use
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of input j, we can place a markup on that same intermediary. We make the assumption
that zi is Hicks neutral and assume all wedges take the form of taxes on gross output to
simplify the notation.

The resource constraint for goods and factors is

∑
j

yji + ∑
h

chi ≤ yi, and ∑
i

li f ≤ z f L f ,

where z f , when f indexes a factor, controls the endowment of efficiency units of factor
f . Finally, net transfers across households are equal to the revenues generated by the
wedges:

∑
h

Th = ∑
i

piyi

(
1 − 1

µi

)
+ ∑

h,i
(µhi − 1)pichi. (2)

We define a general equilibrium with wedges below.17

Definition 4 (General Equilibrium with Wedges). A general equilibrium with wedges is the
collection of prices and quantities such that: (1) the price of each good i equals its marginal
cost times a wedge µi; (2) each producer chooses quantities to minimize costs taking prices
as given; (3) each household chooses consumption quantities to maximize utility taking
prices, consumption taxes, and income as given; (4) net transfers across households are
equal to wedge revenues; (5) all resource constraints are satisfied.

3.2 Different Aggregate Measures in General Equilibrium

We compare our measure of aggregate efficiency, defined in Equation (1), to some pop-
ular measures commonly used in the literature. To do so, index exogenous productivity
parameters, z(t), wedges, µ(t), and lump-sum transfers, T (t) by some scalar t and let
t = 0 denote the status-quo allocation.18 For any equilibrium price or quantity X, we
write X(t) to denote its dependence on the exogenous parameters, z(t), µ(t), and T (t).19

We begin by defining our measure of efficiency.

Aggregate Consumption-Equivalent Variation. Denote the equilibrium consumption
allocations given productivity parameters, z, wedges, µ, and lump-sum transfers, T by

17This notion of general equilibrium is the same one used by Baqaee and Farhi (2020), extended to allow
for multiple households.

18We abstract from changes in factor ownership shares, but it would be straightforward to allow for them
to change exogenously.

19In the case of multiple equilibria, we assume there is an equilibrium selection mechanism. The nature
of this equilibrium selection mechanism is not relevant for A(t), because A(t) is unique given t and the
status-quo.

16



c(z,µ,T ). If the equilibrium is unique, then this is a singleton. Consider the consumption
possibility set

C(z(t),µ(t)) = {c(z(t),µ(t),T ) for some transfers T satisfying (2)} .

In words, C(z(t),µ(t)) is the set of equilibrium consumption allocations that can be at-
tained by varying lump-sum transfers. The second welfare theorem states that C(z,1) is
the Pareto-frontier — when there are no wedges, any point on the Pareto frontier can be
supported as the outcome of general equilibrium with appropriate lump-sum transfers. If
there are wedges, µ ̸= 1, then the distorted consumption possibility set C(z,µ) is strictly
contained in the undistorted consumption possibility set C(z,1).

Applying Definition 1 with respect to C(z(t),µ(t)), we obtain our measure of aggre-
gate efficiency:

A(t) = max
{

ϕ ∈ R : there is c ∈ ϕ−1C(z(t),µ(t)) and uh(ch) ≥ uh(c
0
h) for every h

}
.
(3)

In words, A(t) is the maximum contraction of the consumption possibility set that allows
every agent to be kept at least indifferent to the status-quo. Note that the consumption
possibility set may be distorted, in the sense that it is not the Pareto frontier defined
by technologies. Furthermore, by construction, aggregate efficiency at the status-quo is
equal to one: A(0) = 1. We say that outcomes are interior if the solution to the optimization
problem in (3) features strict indifference of every agent.

Real Output. An important statistic is the chain-weighted index of real output or real
income. As in the growth accounting literature (and the national accounts), we use the
Divisia index to define real output in our model.20 The real output index at t is defined
by

log Y(t) =
∫ t

0
∑

i

pi(s)ci(s)
∑i′ pi′(s)ci′(s)

d log ci(s)
ds

ds,

where ci(s) = ∑h∈H chi(s) denotes aggregate consumption of good i at s ∈ [0, t]. By
construction, real output in the status-quo is one: Y(0) = 1.21

20In principle, using the Arrow-Debreu formalism of indexing commodities by dates and states, Y(t)
would correspond to a net-present value type object that incorporates all final demand in every date and
state. In practice, statistical agencies apply this formula in a static way, period-by-period, to define real
output and use chain-weighted discretized approximations to the true (integral) Divisia index.

21As we show below, and is well-understood, chain-weighted real output does not necessarily measure
anything welfare relevant. See, for example, Hulten (1973) and, more recently, Baqaee and Burstein (2023).
Nevertheless, ∆ log Y is a useful, and commonly relied upon, statistic which, under the assumptions of
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Kaldor-Hicks/Cost-Benefit Efficiency. Another popular aggregate measure is the Kaldor-
Hicks efficiency measure. This measure compares the sum of compensating variations to
aggregate income at t. If the sum of compensating variations is less than aggregate in-
come, then the winners can hypothetically compensate the losers and there can still be
money left-over. The amount of money left over is a measure of the increase in efficiency.
This method is the foundation of almost all of cost-benefit style analyses in applied wel-
fare economics and program evaluation in public finance and industrial organization.

Let eh(p, uh) be an expenditure function representing preferences ⪰h. The Kaldor-
Hicks measure of efficiency at t is

AKH(t) = ∑h eh(p(t), uh(t))
∑h eh(p(t), uh(0))

. (4)

Note that, by construction, Kaldor-Hicks efficiency at the status-quo is equal to one:
A(0) = 1.

Consumption-equivalent of Representative Agent. Another well-known aggregate mea-
sure, when a representative agent exists, is the consumption-equivalent variation used by
Lucas (1987). A representative agent is a hypothetical single consumer such that the de-
mand of the representative agent for each good, given prices and total income, coincides
with equilibrium quantity of that good, given the same prices and aggregate income.22

If a representative agent exists, define the consumption-equivalent for the representa-
tive agent, ARA(t), to be

uRA
(
cRA(t)/ARA(t)

)
= uRA

(
cRA(0)

)
,

where uRA is the utility function of the representative agent. In words, ARA(t) is the
amount by which the aggregate consumption bundle in t must be contracted to make the
positive representative agent exactly indifferent to the status-quo.

3.3 Characterizing A(t) Using Theorem 1

We characterize aggregate efficiency via Theorem 1. To do so, we define a compensated
equilibrium, which is a useful fictional construct for proving results and constructing

Proposition 1, is a welfare-relevant measure.
22For a formal definition, see Appendix A.
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sufficient statistics formulas.23

Definition 5 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, and wedges as
the original economy but where there is a representative agent with preferences as in Def-
inition 3. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

It is important to note that compensated equilibrium prices and quantities are not of
direct interest themselves, but are instead a useful stepping-stone to calculating changes
in aggregate efficiency.

The following result, which is a consequence of Theorem 1, shows that aggregate effi-
ciency can easily be calculated using the compensated equilibrium.

Theorem 2 (Aggregate Efficiency Using Compensated Equilibrium). If outcomes are inte-
rior, then aggregate efficiency can be calculated using the compensated equilibrium:

A(t) = U(ccomp(t)) = Ycomp(t) = AKH,comp(t) = ARA,comp(t).

In words, aggregate efficiency, A(t), can be computed by solving for changes in the
utility of the Hicksian representative agent. Furthermore, since there is only one agent in
the compensated economy with homothetic preferences, changes in utility coincide with
changes in real output in the compensated equilibrium. For the same reason, changes
in utility also coincide with Kaldor-Hicks efficiency and consumption-equivalent of the
Hicksian representative agent.

The importance of Theorem 2 lies in the fact that it allows every tool and result used
to calculate welfare in homothetic representative agent economies to be used to calculate
aggregate efficiency with heterogeneous (and non-homothetic) preferences.

Theorem 2 is expressed in terms of endogenous variables in the compensated equilib-
rium. Solving that equilibrium is essentially the same as solving a representative–agent
model, which is well-understood. For readability, we postpone the full characterization of
variables in the compensated equilibrium to the end of the paper in Section 7.24 However,
we do note the following useful fact about the compensated equilibrium in this section.

23This notion of the compensated equilibrium has many antecedents in prior work, for example it nests
the concept in Jones (2002) and Johansson et al. (2022), the Hicksian equilibrium in Baqaee and Burstein
(2023), the synthetic equilibrium in Debreu (1951), and is closely related to the adjusted price function in
Luenberger (1996). A major difference relative to these notions is that our compensated equilibrium need
not be efficient.

24In Appendix B we also provide the expenditure function of the Hicksian representative agent in the
compensated equilibrium, since the expenditure function is a useful way to solve general equilibrium mod-
els.

19



Lemma 1 (Compensated equilibrium at the status quo). At the status-quo t = 0, prices and
quantities in the compensated equilibrium coincide with those in the decentralized equilibrium.

This lemma, which guarantees that compensated and decentralized variables coincide
at the status-quo, is important for calibrating the model when solving for the compen-
sated equilibrium — expenditure shares at the compensated equilibrium in status-quo
must coincide with observations.

Before deploying Theorem 2 to construct heterogeneous-agent generalizations of well-
known results, we first point out an important, but highly restrictive, special case, where
our measure of aggregate efficiency coincides with the other popular alternatives.

3.4 A Miraculous Consensus

To set aside household heterogeneity, a standard benchmark is to assume every house-
hold has identical homothetic preferences and faces the same relative prices (i.e. there no
household-specific wedges). Under this condition we obtain the following.

Proposition 1 (Miraculous Consensus). If households have identical homothetic preferences,
and face the same relative prices, then a positive representative agent exists and

A(t) = Y(t) = AKH(t) = ARA(t).

The first equality can break down if lump-sum transfers are not available.

In words, the change in aggregate efficiency, measured by the consumption-equivalent
variation, matches the change in chain-weighted index of real output, Kaldor-Hicks (cost-
benefit) efficiency, and the consumption-equivalent of the positive representative agent all
in the decentralized equilibrium. That is, under these assumptions, one can compute A(t)
without relying on the compensated equilibrium. Each of the underlying assumptions is
individually essential: relaxing any one breaks the equivalence. The remainder of the
paper explores those more general settings and illustrates, through examples, why our
efficiency measure avoids the paradoxes of the alternatives when consensus fails. We
consider non-identical and non-homothetic preferences in Section 4, allow for household-
specific wedges (and hence prices) in Section 5, and consider limits to redistribution (e.g.
no lump-sum taxes) in Section 6.25

25In this paper, we are focused on household heterogeneity, but even with a single household, the mirac-
ulous consensus breaks down when preferences are non-homothetic. This point is discussed in detail by
Baqaee and Burstein (2023). Intuitively, when preferences are non-homothetic, even for a single agent, scal-
ing the production possibility set (A(t)), the budget constraint (AKH(t)), and the equilibrium consumption
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Proposition 1 is a consequence of Theorem 2. The reason is that, under the stated as-
sumptions, the price and quantity of each good in the compensated equilibrium coincides
with those in the decentralized equilibrium. This implies that A(t) = Ycomp(t) = Y(t),
since real output in the compensated and decentralized equilibrium only depend on the
prices and quantities of goods. The remaining two equalities are standard.26

4 Competitive Economies with Lump-Sum Transfers

In this section, we characterize how aggregate efficiency responds to changes in produc-
tivity when the welfare theorems hold. This means that, for the remainder of this section,
we assume that all wedges, µ(t), are all equal to one and lump-sum transfers are avail-
able. We consider distorted economies in Section 5 and economies without lump-sum
transfers in Section 6.

We begin this section by providing some general comparative static results. We then
apply these results to some analytical examples to build intuition — including one ex-
ample that extends the Arkolakis et al. (2012) (ACR) formula for the gains from trade
to allow for non-homothetic preferences and heterogeneous agents. We end this section
by comparing our measure of efficiency to measures of efficiency based on the sum of
compensating variations (i.e. Kaldor-Hicks efficiency).

4.1 Comparative Statics

Denote the Domar weight of each producer or factor i by

λi(t) =
pi(t)yi(t)

∑i′ pi(t)ci(t)
1{i is a producer}+ wi(t)zi(t)

∑i′ pi(t)ci(t)
1{i is a factor}.

This the sales of i divided by total final expenditures. The following is a well-known
result characterizing changes in real output in the decentralized equilibrium.

allocation (ARA(t)) do not coincide with one another since, as we shrink resources, the household would
want to change the bundle of goods they consume.

26Under the stated assumptions, there is a positive representative agent with homothetic preferences,
and it follows from Shephard’s lemma that Y(t) = ARA(t) (see, e.g., Baqaee and Burstein, 2023). The final
equality in Proposition 1 follows from the fact that the indirect utility function of each agent, v(p, Ih) can
be written as Ih/P(p), where P(p) is an ideal price index. It then follows that, vRA(p, ∑h Ih), can be written
as (∑h Ih)/PRA(p). Hence, ARA(t) = vRA(p(t), ∑h Ih(t))/vRA(p(0), ∑h Ih(0)) = ∑h Ih(t)/(∑h Ih(0)) ×
P(p(0))/P(p(t)) = AKH(t).
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Proposition 2 (Hulten’s Theorem). The change in chain-weighted real output is

∆ log Y =
∫ t

0
∑

i
λi(s)

d log zi

ds
ds. (5)

This formula, which generalizes Solow (1957), shows that the elasticity of real output
to the productivity of producer i or the quantity of factor i is just the Domar weight of i.
Using Theorem 2, we can easily state a version of Hulten’s theorem that applies to our
measure of aggregate efficiency instead.

Proposition 3 (Compensated Hulten’s Theorem). The change in aggregate efficiency at t is

∆ log A =
∫ t

0
∑

i
λ

comp
i (s)

d log zi

ds
ds. (6)

In Section 7, we characterize λ
comp
i (s) explicitly as a function of the productivity changes ∆ log z,

elasticities of substitution, and expenditure shares.

Differentiating (6) with respect to t and evaluating at t = 0 shows that, to a first-order
approximation, the change in aggregate efficiency, ∆ log A, coincides with the change in
real output in the competitive equilibrium ∆ log Y.

Corollary 1 (First Order Changes in Aggregate Efficiency). To a first-order approximation,
the change in aggregate efficiency is

∆ log A ≈ ∑
i

λ
comp
i (0)∆ log zi = ∑

i
λi(0)∆ log zi ≈ ∆ log Y.

The second equality follows from Lemma 1, which states that prices and quantities
in the compensated equilibrium t = 0 are equal to those in decentralized economy. In
other words, the first-order version of Hulten’s theorem applies unaltered to aggregate
efficiency.

Baqaee and Farhi (2019c) show that, to a second-order approximation, changes in real
output are given by

∆ log Y ≈ ∑
i

λi∆ log zi +
1
2 ∑

i
∆λi∆ log zi.

Differentiating (6) twice with respect to t and evaluating at t = 0, gives the following
generalization of Baqaee and Farhi (2019c).
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Proposition 4 (Second Order Changes in Aggregate Efficiency). To a second-order approxi-
mation, the change in aggregate efficiency due to changes in primitives is

∆ log A ≈ ∑
i

λi∆ log zi +
1
2 ∑

i
∆λ

comp
i ∆ log zi,

where λi and ∆λ
comp
i are evaluated at status-quo. In Section 7, we write ∆λ

comp
i explicitly as

a function of the productivity changes ∆ log z, microeconomic elasticities of substitution, and
expenditure shares in the status-quo.

Proposition 4 shows that discrepancies between aggregate efficiency ∆ log A and real
output ∆ log Y start at the second-order, since, generically ∆λ ̸= ∆λcomp. We delay an
explicit formula for ∆λcomp to Section 7. The intuition is that ∆λcomp is simply the change
in Domar weights in a special case of the environment considered by Baqaee and Farhi
(2019c) where the consumption growth of each agent is treated as-if it is a final good, and
there is a Leontief final demand aggregator over final goods.

4.2 Analytical Examples

To build some intuitioin, we work through some analytical examples for how ∆ log A
responds to changes in technologies.

Example 3 (Regional Productivity Shocks). Consider households in different regions,
indexed by h, with preferences over tradeable goods and locally produced nontradeable
services:

uh(c) = cα
gc1−α

s , ∑
h

chg = zg, chs = zhs.

The first equation shows that utility in each region depends on goods and services with
the expenditure share on goods equal to α. The second equation is the resource constraint
for goods, which clear at the aggregate level. The third equation is the resource constraint
for services, which clear region-by-region, since services are not traded. The parameters
zg and zhs control the endowments of goods and services.

Suppose that households in region h own the local endowment of services and own
a share χh of the aggregate endowment of the traded good. This implies that, in equilib-
rium, χh is the expenditures of each household as a share of total consumption expendi-
tures. The Domar weight on goods is λg = ∑h χhα = α and the Domar weight on services
in region h is λhs = χh(1 − α).
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When productivities change, according to Proposition 2, the change in real output is

∆ log Y = α∆ log zg + (1 − α)Eχ [∆ log zs] ,

where Eχ [∆ log zs] is the average productivity shock to services weighted by the vector
χ. This expression is exact because, in the competitive equilibrium, ∆λ = 0. Furthermore,
since the Domar weights are constant in the competitive equilibrium, there is a positive
representative agent with Cobb-Douglas preferences over goods and services in all re-
gions. Since the positive representative agent has homothetic preferences, the change in
real output ∆ log Y coincides with the change in the welfare of this positive representative
agent ∆ log ARA.

According to Proposition 4, the change in aggregate efficiency, to a second-order, is

∆ log A ≈ α∆ log zg +(1− α)Eχ [∆ log zs]−
1
2
(1 − α)2

α
Varχ [∆ log zs] ≤ ∆ log Y = ∆ log ARA.

The miraculous consensus of Proposition 1 fails because the agents do not have the same
preferences. As predicted by Corollary 1, ∆ log Y and ∆ log A do coincide to a first-order,
since the discrepancy scales in the square of ∆ log zs. The second-order approximation
shows that ∆ log A is a concave envelope of ∆ log Y around the status-quo ∆ log z = 0 —
amplifying negative shocks and mitigating positive shocks to services relative to real out-
put. Intuitively, negative shocks to services are “more costly” since the losses cannot be
shared across regions, whereas the positive representative agent is “willing” to substitute
between regions.

Our next example uses Theorem 1 to apply a version of the popular Arkolakis et al.
(2012) (ACR) formula to economies with heterogeneous agents with non-homothetic pref-
erences.

Example 4 (Gains from Trade in Armington with Heterogeneous Non-Homothetic Agents).
Consider a country with different consumers, h, that value domestic and foreign goods
differently:

uh(ch) =

[
(αh)

1
θh (uh(ch))

ζh c
θh−1

θh
hd + (1 − αh)

1
θh c

θh−1
θh

h f

] θh
θh−1

.

The parameter αh controls home bias for household h, θh > 1 is the compensated Arm-
ington elasticity, and the parameter ζh controls the degree of non-homotheticity for agent
h. We consider the gains from trade relative to autarky, by raising iceberg trade costs to
infinity.
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The country trades with the rest of the world in the status-quo. The efficiency gain
from trade relative to autarky, ∆ log A, is the minimal increase in the domestic good
needed in autarky to keep every consumer indifferent to the status-quo.

Let s0
hd denote household h’s budget share on the domestic good in the status-quo.

Replicating the ACR argument for the Hicksian representative agent in the compensated
equilibrium, we can show that losses for this country of going to autarky are given by

∆ log A = − log Eχ0

[(
s0

hd

) −1
θh−1
]

.

That is, calculate an ACR formula for each household and then average these using house-
hold expenditures in the status-quo (denoted by χ0). Interestingly, the non-homotheticity
plays no role whatsoever and the utility elasticities ξi are not needed to calculate ∆ log A.
In particular, if there is a single agent, the equation above shows that ACR holds with-
out change even if preferences are non-homothetic as long as we use the compensated
Armington trade elasticity.27

To get more intuition of how household heterogeneity matters, consider a second-
order approximation of ∆ log A around autarky:28

∆ log A ≈ Eχ

[
log s0

hd
θh − 1

]
− 1

2
Varχ

[
log s0

hd
θh − 1

]
. (7)

The first term is just an “average” version of the ACR formula — the ACR formula is ap-
plied household-by-household and then averaged using households’ share of aggregate
income χh. The second term is the Jensen’s inequality term, and it lowers aggregate effi-
ciency if there is any heterogeneity in households’ exposure to traded goods either due to
variance in expenditure shares, s0

hd, or trade elasticities, θh.

4.3 Comparison to Kaldor-Hicks efficiency

We end this section by comparing our measure of efficiency with the popular Kaldor-
Hicks measure. As we discuss in Section 6, a major difference between our approach and
Kaldor-Hicks is that our measure does not assume lump-sum taxes are available.

27If preferences are non-homothetic, then there is a distinction between the compensated and uncompen-
sated trade elasticities. If we have estimates of the latter, one must use Slutsky’s equation to first convert
them into the compensated elasticities (see, e.g. 2024 Auer et al.).

28This is an approximation in log s0
hd

θh−1 around s0
hd = 1. To derive this, we follow the strategy in Theorem 3

of Baqaee and Farhi (2019a) who consider the gains from trade with a homothetic representative agent.
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However, even when lump-sum taxes are available, as in this section, our measure
still does not necessarily coincide with Kaldor-Hicks efficiency. The following proposition
illustrates this fact.

Proposition 5 (Paradox for Kaldor-Hicks Efficiency). For any change in technologies (move-
ments of the Pareto efficient frontier), the change in aggregate efficiency, measured using aggregate
consumption-equivalent variation, is weakly less than Kaldor-Hicks efficiency:

∆ log A ≤ ∆ log AKH.

For pure redistributions (movements along the Pareto efficient frontier), the change in aggregate ef-
ficiency, measured using aggregate consumption-equivalent variation, is zero, whereas the change
in Kaldor-Hicks efficiency can be positive:

∆ log A = 0 ≤ ∆ log AKH.

These inequalities are strict outside of knife-edge cases. The final inequality is restate-
ment of the Boadway (1974) paradox — the observation that the sum of compensating
variations assigns strictly positive value to pure redistributions in general equilibrium
when relative prices respond to transfers.29

Figure 4 graphically illustrates the Boadway paradox using a two-good, two-consumer
economy. Intuitively, redistributions lower the relative price of those goods that are more
valued by the losers. Hence, in the new equilibrium, it is relatively cheap to compensate
these households. Of course, such compensations are, in practice, infeasible because if
they were to occur, then relative prices would rise for those households that need compen-
sation.30 In fact, it is possible to construct examples where the production possibility set of
the economy shrinks, C(z(t)) ⊂ C(z(0)), so that ∆ log A < 0 and where ∆ log AKH > 0.
This happens if the competitive equilibrium associated with C(z(t)) has very different
relative prices to C(z(0)), so that it is relatively cheap for the winners to compensate the
losers under the new prevailing prices.

There is a special case where AKH(t) and A(t) coincide: when relative prices do not
depend on final demand. This happens when the economy’s production possibility fron-
tier is a hyperplane, so the marginal rate of transformation, and hence relative prices, are
determined by technology.31 Under these conditions, the change in aggregate efficiency,

29See also Blackorby and Donaldson (1990) for a related critique of the sum of compensating variations
as a measure of efficiency.

30See Jones (2002) for a detailed discussion.
31See Proposition 12 in Appendix C for a formal statement.
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Figure 4: The sum of compensating variations is less than aggregate income since c0 is
below the dashed straight line.

∆ log A, coincides with the change in Kaldor-Hicks efficiency as defined in Equation (4).
Given our assumption that production functions are all constant-returns to scale, the pro-
duction possibility frontier becomes a hyperplane whenever there is only one primary
factor of production.

Besides the endogeneity of prices, there is another important reason why our measure
of efficiency can differ from the Kaldor-Hicks measure. The Kaldor-Hicks measure, by
summing up compensating variations, implicitly assumes that lump-sum transfers are
available, so that winners can costlessly compensate the losers (assuming relative prices
are constant). Our definition of aggregate efficiency naturally extends to allow for limited
redistribution, as we discuss further in Section 6.

5 Distorted Economies with Lump-Sum Transfers

We now relax the assumption in the previous section that there are no wedges, and we
characterize how aggregate efficiency responds to changes in productivities and wedges.
One important comparative static we focus on is the efficiency losses from misallocation
— the increase in aggregate efficiency caused by the elimination of all wedges.

Notation. Throughout this section we normalize household-good-specific wedges to
one, µhi = 1. This involves no loss of generality: any distortion to household h’s con-
sumption of good i can be represented by inserting a fictitious intermediary that pur-
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chases good i on behalf of h and placing an output wedge on that intermediary. We make
this normalization to simplify notation.

5.1 Comparative Statics for Changes in Technologies and Wedges

Theorem 2 means that we can convert results about real output into results about aggre-
gate consumption-equivalent variation by applying them to variables in the compensated
equilibrium. For example, consider the following generalization of Petrin and Levinsohn
(2012) and Baqaee and Farhi (2019b).

Proposition 6 (Changes in Aggregate Efficiency with Wedges). In response to changes in
wedges and productivities, the change in aggregate efficiency is

∆ log A =
∫ t

0
∑

i
λ

comp
i (s)

[(
1 − 1

µi(s)

)
d log ycomp

i
ds

+
1

µi(s)
d log zi

ds

]
ds.

In Section 7, we characterize λ
comp
i (s) and d log ycomp

i /ds explicitly as a function of the produc-
tivity changes ∆ log z, elasticities of substitution, and expenditure shares.

The compensated Domar weights, λcomp, and quantities, d log ycomp, can be computed
using standard methods for inefficient economies with homothetic representative agents
(see Section 7).

We can contrast Proposition 6 with Harberger’s social welfare formula. In his classic
paper, Harberger (1971) argued that the welfare effect of a policy that changes quantities
{yi} over time should be computed as

∫ t

0
∑

i

[
pi(s)− mci(s)

]dyi

ds
ds =

∫ t

0
∑

i
λi(s)

(
1 − 1

µi(s)

)
d log yi

ds
ds, (8)

where the equality uses the fact that final expenditure is the numeraire. In words, he
argued that whenever a good’s marginal benefit, pi(s), exceeds its marginal cost, mci(s),
then expanding its quantity (holding others fixed) raises “social welfare.” Proposition 6
shows that this expression exactly measures the change in aggregate efficiency when
(i) households have identical homothetic preferences, (ii) no household–good–specific
wedges exist, and (iii) lump–sum transfers are available; under these conditions the com-
pensated Domar weight λcomp and changes in quantities d log ycomp coincide with their
uncompensated counterparts in the decentralized equilibrium and Harberger’s formula
holds. Outside of these cases, we must use the compensated versions of the objects. In
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Section 6, we show that a version of Proposition 6 holds even without lump-sum trans-
fers.

5.2 Misallocation and the Distance to Pareto Frontier

We now focus on a particular counterfactual: we apply Proposition 6 to compute the
economic waste caused by distortions. Let µ be a vector of wedges. We measure economic
waste by how far the Pareto frontier can be contracted while keeping every agent at least
as well off as under the status quo.

Formally, denote the status–quo allocation by c0(µ) and the consumption possibility
set by C(µ) (we suppress productivity parameters since we hold them fixed). By the
second welfare theorem, the Pareto frontier is C(1). The efficiency gains of eliminating
markups are measured by

A
(
c0(µ), C(1)

)
.

With a complete structural model this term can be computed using Theorem 2. However,
below we derive an approximation that is more intuitive and requires less information to
be applied.32

Proposition 7 (Harberger Triangles). To a second-order approximation in log µ, the change in
aggregate efficiency is

∆ log A ≈ −1
2 ∑

i
λid log ycomp

i log µi, (9)

where d log ycomp
i ≡ ∑j

∂ log ycomp
i

∂ log µj
log µj is the change in the quantity of i caused by the wedges

in the compensated equilibrium. The approximation error is order log µ3. The derivatives and
expenditure shares in (9) are evaluated at the status-quo.

This proposition generalizes deadweight loss triangles to measure aggregate efficiency
losses from wedges in general equilibrium economies with heterogeneous agents and
non-homothetic preferences. The proof relies on translating results from Baqaee and Farhi
(2024) using Theorem 2.

There are two advantages to using Proposition 7 over and above simply applying
Proposition 6 using a fully-spelled out structural model. First, the Harberger triangles
formula can be used to get analytical intuition for misallocation costs through the use of
loglinearized expressions, as demonstrated below. Second, as we show in a companion

32Baqaee and Burstein (2025b) is a fleshed out application of Proposition 7 to estimate misallocation due
to financial market incompleteness without assuming a fully structural model.
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paper, Baqaee and Burstein (2025b), it is possible to populate the terms in (7) with con-
siderably fewer assumptions about the primitives of the economy — e.g. the drivers of
distortions, productivity processes, and so on.

The intuition for (9) is familiar — a wedge on i is more costly the higher is the Domar
weight and the more elastic is the quantity of i relative to the wedge. However, com-
pared to a representative agent model with homothetic preferences, the relevant notion
of elasticity here is the one in the compensated equilibrium, not the decentralized one.

5.3 Analytical Examples

We provide some pen-and-paper examples to build intuition.

Example 5 (Misallocation when Markups Vary by Household). Suppose each agent h’s
has CES preferences over consumption goods with elasticity of substitution θh and h’s
share of spending in the status-quo is given by the vector bh. We consider a situation in
which each household h pays potentially a different markup µhi on each good i.33 Sup-
pose that all consumption goods are ultimately produced linearly from a single common
primary factor called labor, which is inelastically supplied.

We can apply Proposition 7 to write the aggregate efficiency losses, up to a second
order approximation as34

∆ log A ≈ 1
2

Eχ

[
θhVarbh [logµh|h]

]
=

1
2 ∑

h
χhθh ∑

n
bhn

[
log µhn − ∑

n′
bhn′ log µhn′

]2

, (10)

In words, the reduction in efficiency caused by the markups depends on the average
variance in markups paid by each household multiplied by that household’s elasticity of
substitution. Intuitively, if θh is very high, then dispersion in markups faced by h causes
a greater reduction in aggregate efficiency. Furthermore, aggregate efficiency falls by
more if richer households (those with higher χh) are exposed to more markup dispersion.
Importantly, this expression does not depend on the level of markups paid by each house-
hold. A proportional scaling of all markups paid by any household would leave this ex-
pression unchanged because increasing all markups on a single household is equivalent

33Formally, hi indexes the intermediary between good i and household h. We assume that this intermedi-
ary charges a markup of µhi on its marginal cost. The intermediary’s marginal cost is just the price of good
i.

34This formula is a special case of Proposition 10 in Section 7, where we explicitly solve for prices and
quantities in the compensated equilibrium as a function of primitives.
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to a lump-sum tax on that household, and has no effect on aggregate efficiency.35

We compare ∆ log A to changes in real output, ∆ log Y, and the welfare of a positive
representative agent, ∆ log ARA, as markups are eliminated.

Example 6 (Real Output and Positive Representative Agent Losses from Markups). The
change in chain-weighted real output, and the existence of a positive representative agent,
depends on how wedge revenues are distributed between households.36 Suppose that as
we eliminate markups, each households’ share of income, χh, stays constant.

Since the distribution of income is constant, there is a normative representative agent
with Cobb-Douglas preferences across each households’ consumption bundle (i.e. an
agent whose utility is maximized by observed allocations). The change in the welfare
of this representative agent, in consumption-equivalent terms, is equal to the change in
chain-weighted real output, and both are equal to a second-order approximation to

∆ log Y = ∆ log ARA ≈ ∆ log A +
1
2

Varχ
[
Ebh [logµh|h]

]
.

Since the last summand on the right-hand side is always non-negative, the change in
real output and the welfare of the representative agent are strictly larger than the change
in aggregate efficiency. One limiting case of this is where all markup-variation is at the
household level. In this case, ∆ log A = 0 because the economy is already on the effi-
cient frontier and eliminating markups is purely redistributive. However, in this example,
∆ log Y = ∆ log ARA > 0.

We can push this example even farther: suppose that all markup-variation is at the
household level, and as we eliminate all markups, we also change the productivity of
labor by ∆ log z < 0 at the same time. In this case, the change in chain-weighted real
output is

∆ log Y ≈ ∆ log z +
1
2

Varχ
[
Ebh [logµh|h]

]
,

35This is also true for the fully non-linear solution of aggregate efficiency. To contrast our approach, in
(10), to the formulas derived by Hsieh and Klenow (2009) or Baqaee and Farhi (2020) for misallocation in
representative agent models, consider the following alternative model. There is a single household that
has CES preferences over chn with elasticity of substitution θ. In this case, the losses in efficiency from
markups, up to a second order are: 1

2 θVarλ [log µ], where Varλ(·) denotes a variance with λhn = χhbhn
as the weights. If θh = θ, then we can rewrite this as 1

2 θVarλ [log µ] = ∆ log A + 1
2 θVarχ

[
Ebh

[logµh|h]
]

,
which is an application of the law of total variance, which shows that the losses are strictly lower in the
heterogeneous agent model.

36In fact, it is possible to construct a path whereby real output falls even though we eliminate wedges.
This happens because, outside of the homothetic representative agent case, real output is generically path-
dependent and not related to any welfare measure (see, e.g., Hulten, 1973; Baqaee and Burstein, 2023).
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whereas ∆ log A = ∆ log z. Hence, if the physical productivity shock is small enough,
then real output rises, even though the Pareto frontier shifted inwards.

To summarize, in this example, ∆logY and ∆ log ARA assign a positive value to a pure
transfer, and if negative productivity shocks are sufficiently small, then a positive value
to a strictly smaller production possibility set.

6 Aggregate Efficiency with Limits to Redistribution

In this section, we extend the analyses in Sections 4 and 5 to allow for imperfect redis-
tributive tools. This is another advantage of our approach relative to measures based on
adding up willingness-to-pay across all households (e.g. as in Kaldor-Hicks). Intuitively,
when we add up willingness-to-pay, we implicitly assume that winners can compensate
losers. In Section 4, we illustrated one issue with this approach: monetary compensations
can change relative prices so that, in practice, the necessary compensations are infeasible.
In this section, we focus on a second issue — monetary compensations may be infeasible
because lump-sum transfers are not available.

Theorem 1 applies regardless of what redistributive tools are available. In this section,
we apply Theorem 1 to the case where redistribution can only be achieved via linear
taxation in general equilibrium with wedges.

6.1 General Solution with Linear Taxes

Consider a general equilibrium with technologies z and wedges µ. We allow a vector of
linear taxes τ on different goods, and let the vector T dictate the amount of tax revenues
sent to each household. We require budget-balance, so that total tax revenues must equal
total transfers to households. Index the equilibrium consumption allocation c(z,µ, τ ,T )

by technologies, z, wedges, µ, and the tax-and-transfer scheme, (τ ,T ).
Let the set of all feasible tax-and-transfer schemes be T (z,µ). The case with lump-sum

transfers studied in Section 4 and Section 5 is the special case that places no non-negativity
constraint on the vector T so that redistribution is accomplished without linear taxes. In
this section, we allow for the possibility that this set has other restrictions. For example,
the feasible set T , may allow only distortionary linear taxes on some subset of goods,
limit lump-sum transfers to be non-negative.

Corollary 2 (Aggregate Efficiency with Restricted Tax-and-Transfer Instruments). Theo-
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rem 1 implies that aggregate efficiency satisfies:37

A(z,µ) = max {U (c(z,µ, τ ,T )) : (τ ,T ) ∈ T (z,µ)} . (11)

That is, aggregate efficiency is given by the highest utility U(c) that can be achieved by choos-
ing feasible taxes and transfers, (τ ,T ) ∈ T (z,µ), taking into account how those choices affect
consumption, c, and in turn utility, U.

In words, A(z,µ) measures the maximum contraction (or minimum expansion) of the
set of feasible equilibrium consumption allocations, given technologies, z, wedges, µ, and
tax-and-transfer instruments, (τ ,T ). Corollary 2 applies to the special cases considered
in Section 4 and 5, where we assume that the feasible set of instruments, T , consists only
of unrestricted lump-sum transfers.

As before, we index technologies and wedges by a scalar t and let t = 0 denote the
status-quo. Figure 5 illustrates A(t) using a two household example. In the figure, the
status-quo allocation, c(0), and the decentralized allocation without transfers, c(t), are
denoted by red circles. The solid blue line shows the feasible consumption possibility
frontier at t given distortionary taxation, and the dashed line indicates the frontier at t
given unrestricted lump-sum taxes. The two frontiers touch at the decentralized point,
since the decentralized point is does not engender any distortionary redistributive tax-
ation. However, the solid blue set is strictly smaller than the dashed line since distor-
tionary taxation limits the set of feasible redistributions. The change in efficiency, ∆ log A,
is still the largest radial contraction of C(t) that allows every household to be made at
least indifferent to the status-quo. Since the larger is the possibility set C(t), the more it
must be contracted to reach indifference, aggregate efficiency gains are larger with better
redistributive tools.

Let τ ∗(t) and T ∗(t) to be the maximizers of (11). Using τ ∗(t), we provide a slightly
more general definition of the compensated equilibrium.

Definition 6 (Compensated Equilibrium). A compensated equilibrium is the general equi-
librium of an economy with the same technologies, resource constraints, wedges, and
linear taxes τ ∗(t) but where there is a representative agent with preferences as in Defini-
tion 3. For any equilibrium variable X(t), denote the same variable in the compensated
equilibrium by Xcomp(t).

37If there are multiple equilibria, then c(z,µ, τ ,T ) is a correspondence and the maximization is applied
to set of potential equilibrium allocations. We could equivalently write A(z,µ) = maxc∈C(z,µ) U(c), where
the consumption possibility set is C(z,µ) = {c(z,µ, τ ,T ) : (τ ,T ) ∈ T (z,µ)} .
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Figure 5: Aggregate efficiency is measured by the maximal radial expansion of the feasible
set necessary to achieve indifference.

The following result, which is a consequence of Theorem 1, generalizes Theorem 2 to
allow for limited redistribution.

Theorem 3 (Aggregate Efficiency Using Compensated Equilibrium). If outcomes are inte-
rior, then aggregate efficiency can be calculated using the compensated equilibrium:

A(t) = Ycomp(t) = AKH,comp(t) = ARA,comp(t).

In words, aggregate efficiency, A(t), can be computed by solving for changes in real
output, or welfare of the Hicksian representative agent, in the compensated equilibrium.38

Once again, this means that tools and results used to calculate welfare in homothetic rep-
resentative agent economies can be converted into results about aggregate efficiency with
heterogeneous and non-homothetic preferences.

The main challenge lies in knowing the necessary taxes τ∗(t) which the proposition
takes as given. However, given these taxes, then the change in every price and quantity in
the compensated equilibrium can be calculated as a function of t by applying the results
in Baqaee and Farhi (2020).

An interesting consequence of Theorem 3 is the following generalization of Proposi-
tion 4.

Proposition 8 (Productivity Shocks with Limited Redistribution). Consider a perfectly com-
petitive status-quo without linear taxes and wedges. If outcomes are interior, the response of

38The fact that Kaldor-Hicks efficiency, AKH,comp(t), in the compensated equilibrium with distortionary
taxes τ∗ coincides with the rest follows trivially from the fact that the compensated equilibrium has a single
agent with homothetic preferences. It is important to note that AKH,comp(t) is not the same as AKH(t).
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aggregate productivity to a productivity shock, ∆ log z, to a second-order approximation, is given
by

∆ log A = ∑
i

(
λi +

1
2 ∑

j

∂λ
comp
i

∂ log zj
∆ log zj

)
∆ log zi +

1
2 ∑

i
λi

(
∑

j

∂ log ycomp
i

∂ log τj
∆ log τ∗

j

)
∆ log τ∗

i .

(12)

The first set of summands are exactly as in Proposition 4. The second set of summands,
which are new and non-positive, capture the inefficiency caused by imperfect redistribu-
tion. These are the sum of Harberger triangles associated with the linear taxes in τ∗(t).
If lump-sum taxation is not feasible, then linear taxes must be used, ∆ log τ∗ ̸= 0, and
aggregate efficiency with limited redistribution is lower than with lump-sum taxation by
exactly the sum of deadweight loss triangles. That is, the response of aggregate efficiency
to productivity shocks is the same as it would be if lump-sum transfers were possible
minus the deadweight loss triangles associated with distortionary taxes. The simplicity
of Equation (12) follows from the fact that the status-quo is undistorted. This ensures that
(1) there are no interactions of taxes with pre-existing distortions, (2) the cross-partials
between d log τ∗ and d log z are all zero due to the envelope theorem. Corollary 2 and
Theorem 3 do not require that the status-quo be undistorted.

The following simple corollary, obtained by ignoring the second order terms, shows
that Hulten’s theorem holds, without change, even with limited redistribution.

Corollary 3 (Hulten’s Theorem with Limited Redistribution). Consider a perfectly competi-
tive status-quo without linear taxes and wedges. If outcomes are interior, the response of aggregate
productivity to a productivity shock, ∆ log z, to a first-order approximation, is given by

∆ log A = ∑
i

λi∆ log zi.

Intuitively, the losses from costly-redistribution are second-order, and hence to a first-
order approximation, only the direct effects of the productivity shock matter (assuming
we start at a competitive equilibrium).

6.2 Worked Out Examples

We now use two examples to study the efficiency gains from international trade and from
skill-biased technological change, accounting for limited redistribution. We use the ap-
proximation in Proposition 8 to provide intuition. We check the numerical performance
of the second-order approximation by computing exact results using Theorem 3.

35



Example 7 (Gains from Trade with Limited Redistribution). We revisit Example 4, which
studied the gains from trade, but this time we incorporate limits to redistribution. This
generalizes Arkolakis et al. (2012) to allow for heterogeneous agents and limited redistri-
bution.

Suppose there are two households, and household h has nested-CES preferences over
domestic consumption goods, chd, imported goods, ch f , and a second domestic good we
call leisure lh:

uh(ch) =

(1 − γh)
1
ρ

[
(1 − αh)

1
θ c

θ−1
θ

hd + αh
1
θ c

θ−1
θ

h f

] θ
θ−1

ρ−1
ρ

+ γ
1
ρ

h l
ρ−1

ρ

h


ρ

ρ−1

.

The model in Example 4 did not feature the leisure good. The inner nest combines domes-
tic and foreign consumption goods with Armington elasticity θ and home bias controlled
by the parameter αh. The outer nest combines the goods bundle with leisure with elastic-
ity of substitution ρ and share parameter γh.39

Household h is endowed with one unit of time and ah efficiency units of labor and
faces a budget constraint:

τpdchd + τp f ch f = wah(1 − lh) + Th,

where pd and p f denote the price of each consumption good, wh is the wage per effi-
ciency unit, τ is the gross-tax rate on consumption, and Th is a lump sum transfer. Bud-
get balance requires (τ − 1)∑(pdchd + p f ch f ) = ∑ Th. The domestic consumption good
is produced linearly with labor, so the resource constraint for domestic consumption is

∑h chd = ∑h ah(1 − lh), with pd = w. The resource constraint for leisure is lh ≤ 1.
The status-quo is a competitive equilibrium without taxes in which the country trades

with the rest of the world. We consider the gains from trade relative to autarky, by raising
iceberg trade costs to infinity. The efficiency gain from trade relative to autarky, ∆ log A,
is the minimal increase in the domestic consumption possibility set in autarky needed to
keep every consumer indifferent to the status-quo. The consumption possibility set en-
codes the potentially distortionary impact of taxes required to transfer income between
households. We compare two cases: (1) lump-sum taxation is available and the second
welfare theorem holds; (2) lump-sum taxation is not available, Th ≥ 0, and linear con-
sumption taxes must be used.

39For simplicity of exposition, we abstract from non-homotheticities and differences in elasticity param-
eters across households. It is simple to extend the model in this way.

36



Let

Ω0
d =

p0
dc0

hd + p0
f c0

h f

w0ah

denote household h’s budget share on consumption in the status-quo as a share of the
value of h’s total time endowment (the remainder is implicit expenditures on leisure).
For simplicity of exposition, and since it is fairly realistic, we assume that both house-
holds work the same number of hours in the status-quo, which implies that Ω0

d does not
vary by household. Let s0

hd denote household h’s share of expenditures on the domestic
consumption good relative to all consumption goods:

s0
hd =

p0
dc0

hd
p0

dc0
hd + p0

f c0
h f

.

Lump-Sum Taxation. With lump-sum taxation, using Proposition 8, we can write the
gains from trade to a second-order approximation as

∆ log Alump-sum ≈ ΩdEχ

[
log s0

h
θ − 1

]
︸ ︷︷ ︸

1st order

− 1
2

Ω2
dVarχ

(
log s0

h
θ − 1

)
+

1
2
(ρ − 1)Ωd(1 − Ωd)Eχ

[ log s0
h

θ − 1

]2


︸ ︷︷ ︸
2nd order with lump-sum taxation

,

this expression is identical to Equation (7) in Example 4 when there is no leisure, Ωd =

1. The first and second summands are the same as in (7) but are now scaled by Ωd to
account for the fact that households also consume leisure. The final summand, which
is absent in (7), accounts for complementarities/substitutabilities between consumption
and leisure. If consumption and leisure are complements, ρ < 1, then a negative shock to
consumption caused by autarky reduces the value of leisure through complementarity.

Linear Taxation. Now consider the case where lump-sum taxation is unavailable so that
lump-sum transfers must be non-negative: T ≥ 0, financed by a uniform consumption
tax. Proposition 8 now implies that, to a second-order approximation,

∆ log Alinear tax ≈ ∆ log Alump-sum − 1
2

ρΩd(1 − Ωhd)(d log τ∗)2

︸ ︷︷ ︸
2nd order losses from distorting taxes

,

where τ∗ is the optimal consumption tax in Equation (11).
Index the two households by h and h′ and suppose that s0

hd < s0
h′d. This means that, in
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the decentralized equilibrium, household h is more negatively affected by the trade shock
than h′. In this case, the optimal feasible tax-and-transfer from (11) sends all collected tax
revenues to h. Furthermore, to a first-order, the tax required for the compensation is
d log τ∗ = χh

θ−1

[
log s0

hd − log s0
h′d

]
> 0.

The required consumption tax is larger the bigger is the heterogeneity in exposure to
the trade shock, and the larger is household h’s share of aggregate income. A given tax
is more distorting the higher is ρ, which controls substitution between consumption and
leisure (ρ can be interpreted as the Frisch elasticity of labor supply), and the closer is Ωd

to 1/2. If Ωd is equal to either one (households do not value leisure) or zero (households
do not value consumption), then there is no distortion from the tax.

Example 7 numerically illustrates the performance of the second-order approximation
to the exact solution with distortionary linear taxes, and compares them both to the so-
lution with lump-sum taxes. The second-order approximation performs well even for
large shocks. Panel 6a uses ρ = 0.5, so consumption and leisure are complements and the
Frisch elasticity of labor supply is a reasonable 0.5. Since ρ is low, distortionary taxes are
able to achieve an outcome that is roughly as good as lump-sum taxes. Panel 6b uses a
much higher ρ = 3. In this case, the gap between the lump-sum and linear taxation sce-
narios is larger since consumption taxes reduces labor and increase leisure, which causes
efficiency to fall.
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(b) ρ = 3.0

Figure 6: A numerical example of the losses from autarky with and without distortionary
redistribution. The other parameter values are Ωd = 0.5, χh = 0.5, θh = 3, s0

hd = 3s0
h′d.

To summarize: losses from autarky are larger if some households are more badly af-
fected than others, especially if efficient redistributive tools are not available to compen-

38



sate the households that are more badly affected.

In the previous example, households are differentially affected by the trade shock be-
cause they have different preferences (e.g. some households consume more imports than
others). In the next example, we instead consider a situation where households are differ-
entially affected by a technology shock because they have different sources of income —
the relative real wage between households changes in response to technological change.

Example 8 (Skill-Biased Technical Change). We now consider a simple example with
skill-biased technical change that raises the real wage of high-skill workers but lowers
the real-wage for low-skill workers. We compare how the response of aggregate effi-
ciency changes depending on the redistributive tools available. Suppose that output (and
consumption) are a CES aggregate of the output of manufacturing and services:

c = y =

[
γ

1
ρ

1 y
ρ−1

ρ
m + (1 − γ1)

1
ρ y

ρ−1
ρ

s

] ρ
ρ−1

,

where each sector’s output is a CES aggregate of low- and high-skill labor

yo =

[
α

1
σ
o (zo1lo1)

σ−1
σ + (1 − αo)

1
σ (zo2lo2)

σ−1
σ

] σ
σ−1

,

where lo1 is low- and lo2 is high-skill labor. The resource constraints are that

∑
h

ch = c, ∑ lo1 = l1, ∑ lo2 = l2.

We assume that workers are much more substitutable than sectors: ρ ≪ σ. We also
assume that manufacturing is more intensive in low-skill labor use than services.

Consider an increase in automation or the productivity of capital, which we capture
via an increase in the productivity of high-skill labor in manufacturing: ∆ log zm2 > 0.
This is a reduced-form representation for the idea that high-skill labor in manufacturing
is equipped by capital, and hence an increase in the quality of capital makes high-skill
more productive.40

Again, we contrast two scenarios: (1) lump-sum taxation is available, (2) lump-sum
transfers must be non-negative and the government can only levy a linear tax on machine

40For example, high-skill labor and capital are combined in a Leontief nest together called equipped labor,
and then equipped labor is substitutable with low-skill labor. We can then think of altering the productivity
of equipped labor by varying the productivity of capital.

39



use in manufacturing, which we capture as a linear tax, τ, on manufacturing’s use of high-
skill labor.

Figure 7 illustrates the results in a numerical example. Panel 7a shows that skill-biased
technical change raises the real wage for high-skill workers and lowers them for low-skill
workers in the decentralized equilibrium. The fact that low-skill wages decline means
that they need to be compensated via transfers financed by either lump-sum or distor-
tionary taxes. Panel 7b shows the increase in efficiency depending on which taxes are
used. As expected, the increase in aggregate efficiency is lower if only distortionary red-
stributive tools are available. Panel 7b also shows that the second-order approximation is
very accurate. In the absence of any redistributive tools whatsoever, aggregate efficiency
in this example actually declines because the low-skill workers are worst off and there is
no feasible way to compensate them.
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Figure 7: A numerical example of skill-biased technical change. The parameter values are
ρ = 1, σ = 8, γ = 0.5, αm1 = 0.9, and αs1 = 0.5. We normalize steady-state quantities so
that the CES share parameters are equal to expenditure shares in the status-quo.

7 Explicit Characterization of Compensated Equilibrium

Theorem 2 and Theorem 3 show that calculating changes in aggregate efficiency can be
boiled down to solving for the compensated equilibrium. This section provides some
formulas for calculating variables in the compensated equilibrium. To do so, we rely on
the results in Baqaee and Farhi (2020), which provide a characterization of solutions of
representative agent economies with wedges.
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For concreteness, assume that all production and utility functions are nested-CES.41

To make the notation more compact, represent the economy in such a way that each pro-
ducer, i, is associated with a single elasticity of substitution θi (by treating each sub-nest
as a separate producer)

7.1 Input-Output Notation

Stack the expenditure shares of the representative household, all producers, and all fac-
tors into the (H + N + F)× (H + N + F) input-output matrix Ω. The first H rows cor-
respond to the households consumption baskets. The next N rows correspond to the
expenditure shares of each producer on every other producer and factor. The last F rows
correspond to the expenditure shares of the primary factors (which are all zeros, since pri-
mary factors do not require any inputs). With some abuse of notation, the heterogeneous
agent input-output matrix can be written as

Ω =



0 · · · 0 b11 · · · b1N 0 · · · 0
... · · · ... · · · · · ·
0 · · · 0 bH1 · · · bHN 0 · · · 0

0 · · · 0 Ω11 · · · Ω1N Ω1N+1 · · · Ω1N+F
... · · · ... . . .

0 · · · 0 ΩN1 ΩNN ΩNN+1 · · · ΩNN+F

0 · · · 0 0 · · · 0 0 · · · 0
... · · · ...

... · · · ...
... · · · ...

0 · · · 0 0 · · · 0 0 · · · 0


The Leontief inverse matrix is the (H + N + F)× (H + N + F) matrix defined as

Ψ ≡ (I − Ω)−1 = I + Ω + Ω2 + . . . ,

where I is the identity matrix. The Leontief inverse matrix Ψ ≥ I records the direct and
indirect exposures through the supply chains in the production network.

Denote the distribution of expenditures by each household by χ, which is an (H + N + F)×
1 vector. The first H elements are equal to each household’s share of aggregate consump-
tion expenditures, and the remaining N + F elements are all zeros. As a matter of ac-

41Non-CES economies can be analyzed in a similar way following the non-CES extensions in Baqaee and
Farhi (2019c).
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counting identities, the vector of Domar weights satisfies:

λ′ = χ′Ψ.

In this equation λ′ is a (H + N + F) × 1 vector. The first H elements are equal the ex-
penditures of each household relative to aggregate consumption expenditures, χ′, the
next N + F elements are equal to the sales of each good and factor relative to aggregate
consumption expenditures.

Let µ and τ denote the diagonal matrices whose iith element is equal to µi and τi

respectively. Define the cost-based Leontief inverse to be

Ψ̃ = (I − (τµ)−1Ω)−1.

Note that the cost-based Leontief inverse coincides with Ψ in the absence of wedges.
Intuitively, Ψ̃ is a version of the Leontief inverse that calculates exposures of i to j in terms
of cost shares rather than revenue shares (revenues exceed costs if wedges and taxes are
greater than one).

For any non-negative vector a, define

Cova(b, c) = Ea[bc]− Ea[b]Ea[c] = ∑
i

ai

∑i′ ai′
bici − ∑

i

ai

∑i′ ai′
bi ∑

i

ai

∑i′ ai′
ci,

where Ea[·] denotes averages of vectors weighted by the elements of a. For any matrix X,
denote its ith row and column by X(i,:) and X(:,i).

7.2 Differential Hat-Algebra

The next proposition characterizes compensated variables in terms of initial expenditure
shares, wedges, and shocks.

Proposition 9 (Differential Equations for Compensated Equlibrium). Assuming interior
outcomes, the compensated equilibrium satisfies the following system of differential equations. For
each i ∈ H + N + F, the compensated price satisfies

d log pcomp
i = ∑

j
Ψ̃comp

ij [d log µjτ
∗
j − d log zj] + ∑

f∈F
Ψ̃comp

i f d log λ
comp
f . (13)
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Compensated Domar weights for goods and factors satisfy

dλ
comp
l = ∑

j
λ

comp
j (1− θj)µ

−1
j CovΩcomp

(j,:)

(
d log pcomp, Ψcomp

(:,l)

)
+Covχcomp

(
d log χcomp, Ψcomp

(:,l)

)
− ∑

j
λj
(
Ψjl − 1[j = l]

)
d log µjτ

∗
j . (14)

Changes in compensated expenditure shares for household h satisfy

d log χ
comp
h = d log pcomp

h , (15)

where d log pcomp
h is the price of the consumption bundle for household h. The compensated input-

output matrix satisfies

dΩcomp
ij = (1 − θi)

(
d log pcomp

j − EΩcomp
(i,:)

[d log pcomp]

)
− d log µi. (16)

Finally, d log ycomp
i is given by d log λ

comp
i − d log pcomp

i . The initial conditions are given by
Lemma 1 that all prices and expenditures are equal to the ones in the competitive equilibrium for
t = 0.

Equation (13), (14), and (16) are standard and identical to expressions in Baqaee and
Farhi (2020). They are loglinearizations of marginal cost-functions, market clearing con-
ditions, and demand curves respectively. The key equation, which distinguishes the com-
pensated equilibrium from the decentralized equilibrium is (15). Whereas in the decen-
tralized equilibrium changes in household expenditures are determined by changes in the
income of each household, in the compensated equilibrium, they are determined by the
choices of the Hicksian representative agent (who tries to equate homothetized utilities
across agents). The term d log pcomp

h , which is pinned down by (13), is the change in the
compensated price index of household h.

The taxes τ ∗(t) are given by the maximizers of the problem in (12). If only lump-
sum transfers are used for redistribution, as in Sections 4 and 5, then τ ∗(t) = 0, and
Proposition 9 fully characterizes the compensated equilibrium in terms of exogenous pa-
rameters: z(t) and µ(T). If lump-sum transfers are unavailable, then solving for τ∗(t)
requires specifying more details about the set of available tax instruments. Specifically,
we would need to add the log-linearized first-order conditions for the tax instruments
from (12) as additional equations in Proposition 9 to pin down how τ∗ evolves.

There is one case where this optimization problem can be avoided. If there are only
H − 1 taxes available, and outcomes are interior, then (15) can pin down τ∗(t). For exam-

43



ple, suppose that there are H − 1 taxes, and the share of revenues from the ith tax sent to
household h are given by αih:

Th(t) = ∑
i

αih

(
1 − 1

τ∗
i (t)

)
λi(t).

Log-differentiating household h’s budget constraint gives:

d log χ
comp
h = ∑

f

ωh f

χh
d log λ

comp
f +

dTh

χ
comp
h

,

differentiating Th(t) above, and substituting it into the log-linearized budget constraint
gives H − 1 additional equations which, assuming regularity conditions, will pin down
d log τ ∗.

Generally, solving the system of linear equations in Proposition 9 requires inverting a
system of equations. When there is a single primary factor of production and we evaluate
these derivatives at a perfectly competitive point, then the change in efficiency can be
solved out easily up to a second-order.

Proposition 10 (Aggregate Efficiency with One Factor). Consider a competitive economy with
a single primary factor of production. The change in aggregate efficiency in response to a vector of
productivity shocks, ∆ log z and changes in wedges ∆ logµ is

∆ log A ≈∑
i

λi∆ log zi +
1
2 ∑

i∈N+H
λi(θi − 1)VarΩ(i,:)

(
∑
k

Ψ(:,k) log zk

)

− 1
2 ∑

i∈N+H
λiθiVarΩ(i,:)

(
∑
k

Ψ(:,k)∆ log(µkτ∗
k )

)
.

to a second-order approximation in ∆ log z and ∆ log µ.

There are three summands. The first one is just Hulten’s theorem. The second sum-
mand is a nonlinear adjustment due to changes in Domar weights. The second summand
is also equal to: 1/2 ∑j ∂λ

comp
k /∂ log zj∆ log zj∆ log zk. If the compensated Domar weight

for k rises due to productivity shocks, then the shock to k is more important. This happens
if exposure to k is heterogeneous, captured by the variance term, and if elasticities of sub-
stitution, θi, are far from unity. The final summand are the Harbeger triangles caused by
the taxes and wedges. The triangles are larger the higher are elasticities of substitution,
θi, and the more heterogeneous are exposures to the taxes and wedges, captured by the
variance terms.
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8 Conclusion

This paper defines a measure of aggregate efficiency using the aggregate consumption-
equivalent variation. We establish that this measure can be computed by solving for the
equilibrium in a fictitious representative agent economy. This provides a method for
translating theorems and tools about representative-agent economies to study aggregate
efficiency in economies with heterogeneous agents. This includes Hulten (1978), Har-
berger (1964), Petrin and Levinsohn (2012), Arkolakis et al. (2012), and Baqaee and Farhi
(2019c) and Baqaee and Farhi (2020).

In two stand-alone companion papers, we apply the theoretical results of this pa-
per to contexts where household heterogeneity is of the utmost importance. Baqaee
and Burstein (2025b) consider losses in aggregate efficiency from incomplete risk shar-
ing within and across borders. Baqaee and Burstein (2025a) characterize aggregate ef-
ficiency in random utility models with discrete choice, focusing on spatial economies,
where households make different choices due to differences in their preferences. An in-
teresting extension, which we do not pursue in this paper but pursue in ongoing work,
is studying policy problems where maximizing aggregate efficiency is the objective of the
policymaker.
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Appendix A Representative Agent

We follow the definition of a positive representative agent in Mas-Colell et al. (1995). We
say that uRA is a representative agent if the Marshallian demand curves of the representa-
tive agent, given prices and total income, coincide with equilibrium allocations given the
same prices and aggregate income:

arg max
c

{uRA(c) : ∑
i

pi(t)ci ≤ I(t)} = ∑
h

arg max
ch

{uh(ch) : ∑
i

pi(t)chi ≤ Ih(t)}.

Appendix B Expenditure Function of Hicksian RA

The following proposition characterizes the expenditure function of the Hicksian repre-
sentative agent.

Proposition 11 (Dual Representation of Hicksian Representative Agent). The expenditure
function associated with U(c), in Definition 2, denoted by E(p, U) is

E(p, U) =

(
∑

h∈H
eh(p; uh(c

0
h))

)
U.

By Shephard’s lemma, the budget share of the Hicksian representative agent on good i, denoted
bcomp

i , is

bcomp
i (p) =

∂ log E(p, U)

∂ log pi
= ∑

h

eh(p, u0
h)

∑h′ eh′(p, u0
h′)

bhi(p, u0
h),

where bhi(p, u0
h) is the compensated budget share of household i at the status-quo indifference

curve u0
h ≡ uh(c

0
h).

In words, the Hicksian representative agent’s spending on each good i is the average
compensated budget share of all households, where each household is weighted accord-
ing to its compensating variation, eh(p, u0

h).
Given compensated aggregate budget shares, bcomp

i (p), we can solve for equilibrium
variables in the compensated equilibrium including prices pcomp. Setting aggregate spend-
ing to be the numeraire in the compensated equilibrium, and using Theorem 2, we know
that

A(t) = U(t) =
1(

∑h∈H eh(pcomp; uh(c
0
h))
) .
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Appendix C Proofs

Proof of Theorem 1. Denote the solution to (1) by ϕ∗, and an allocation that attains this solu-
tion (it does not need to be unique) by c∗ ∈ exp(−ϕ∗)C. By the definition of ϕ∗ and U(·),
and given local nonsatiaton, U(c∗) = U(c0) = 1. Denote the solution to V(C) by c∗∗,
with c∗∗ ∈ C. Since U(·) is homogeneous of degree 1, it follows that V(exp(−ϕ∗))C) =

exp(−ϕ∗)V(C), with solution exp(−ϕ∗)c∗∗. Note that V (exp(−ϕ∗)C) ≥ 1 because c∗ ⊆
exp(−ϕ∗)C and U(c∗) = 1. Moreover, V (exp(−ϕ∗)C) = 1 because, if it were strictly
higher than 1, the solution to (1) would be higher than ϕ∗. It thus follows that:

V(C) = V(C)
V (exp(−ϕ∗)C) = exp (ϕ∗) .

Proposition 12 (Equivalence of Kaldor-Hicks and Aggregate Efficiency). If there is one
primary factor, so that relative prices are independent of demand, then A(t) = AKH(t).

Other proofs to be added.
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